論文の概要: Timing-Based Backpropagation in Spiking Neural Networks Without
Single-Spike Restrictions
- arxiv url: http://arxiv.org/abs/2211.16113v1
- Date: Tue, 29 Nov 2022 11:38:33 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-30 14:44:09.334781
- Title: Timing-Based Backpropagation in Spiking Neural Networks Without
Single-Spike Restrictions
- Title(参考訳): 単一スパイク制限のないスパイクニューラルネットワークにおけるタイミングベースバックプロパゲーション
- Authors: Kakei Yamamoto, Yusuke Sakemi, Kazuyuki Aihara
- Abstract要約: スパイキングニューラルネットワーク(SNN)のトレーニングのための新しいバックプロパゲーションアルゴリズムを提案する。
シングルスパイク制限なしで、個々のニューロンの相対多重スパイクタイミングに情報をエンコードする。
- 参考スコア(独自算出の注目度): 2.8360662552057323
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a novel backpropagation algorithm for training spiking neural
networks (SNNs) that encodes information in the relative multiple spike timing
of individual neurons without single-spike restrictions. The proposed algorithm
inherits the advantages of conventional timing-based methods in that it
computes accurate gradients with respect to spike timing, which promotes ideal
temporal coding. Unlike conventional methods where each neuron fires at most
once, the proposed algorithm allows each neuron to fire multiple times. This
extension naturally improves the computational capacity of SNNs. Our SNN model
outperformed comparable SNN models and achieved as high accuracy as
non-convolutional artificial neural networks. The spike count property of our
networks was altered depending on the time constant of the postsynaptic current
and the membrane potential. Moreover, we found that there existed the optimal
time constant with the maximum test accuracy. That was not seen in conventional
SNNs with single-spike restrictions on time-to-fast-spike (TTFS) coding. This
result demonstrates the computational properties of SNNs that biologically
encode information into the multi-spike timing of individual neurons. Our code
would be publicly available.
- Abstract(参考訳): 本研究では,個々のニューロンの相対的多重スパイクタイミングにおける情報を単一スパイク制限なしで符号化する,スパイクニューラルネットワーク(SNN)のトレーニングのための新しいバックプロパゲーションアルゴリズムを提案する。
提案アルゴリズムは、スパイクタイミングに関する正確な勾配を計算し、理想的な時間的符号化を促進するという従来のタイミングに基づく手法の利点を継承する。
各ニューロンが最大1回発火する従来の方法とは異なり、提案アルゴリズムでは各ニューロンが複数回発火することができる。
この拡張により、SNNの計算能力が自然に向上する。
我々のSNNモデルは、SNNモデルに匹敵する性能を示し、非畳み込み人工ニューラルネットワークと同じくらい高い精度で達成した。
ネットワークのスパイクカウント特性はシナプス後電流と膜電位の時間定数によって変化した。
さらに,テスト精度が最大となる最適時間定数が存在することがわかった。
従来のSNNではタイム・トゥ・ファスト・スパイク(TTFS)のコーディングに単一スパイク制限が課されていた。
この結果は、生物学的に情報を個々のニューロンのマルチスパイクタイミングにエンコードするSNNの計算特性を示す。
私たちのコードは公開されます。
関連論文リスト
- Temporal Spiking Neural Networks with Synaptic Delay for Graph Reasoning [91.29876772547348]
スパイキングニューラルネットワーク(SNN)は、生物学的にインスパイアされたニューラルネットワークモデルとして研究されている。
本稿では,SNNがシナプス遅延と時間符号化とを併用すると,グラフ推論の実行(知識)に長けていることを明らかにする。
論文 参考訳(メタデータ) (2024-05-27T05:53:30Z) - LC-TTFS: Towards Lossless Network Conversion for Spiking Neural Networks
with TTFS Coding [55.64533786293656]
我々は,AIタスクにおいて,ANNのアクティベーション値とSNNのスパイク時間とのほぼ完全なマッピングを実現することができることを示す。
この研究は、電力制約のあるエッジコンピューティングプラットフォームに超低消費電力のTTFSベースのSNNをデプロイする方法を舗装している。
論文 参考訳(メタデータ) (2023-10-23T14:26:16Z) - High-performance deep spiking neural networks with 0.3 spikes per neuron [9.01407445068455]
バイオインスパイアされたスパイクニューラルネットワーク(SNN)を人工ニューラルネットワーク(ANN)より訓練することは困難である
深部SNNモデルのトレーニングは,ANNと全く同じ性能が得られることを示す。
我々のSNNは1ニューロンあたり0.3スパイク以下で高性能な分類を行い、エネルギー効率の良い実装に役立てる。
論文 参考訳(メタデータ) (2023-06-14T21:01:35Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
脳にインスパイアされたスパイクニューラルネットワーク(SNN)は、パターン認識タスクを解く上で有望な能力を示している。
これらのSNNは、情報表現に一様神経コーディングを利用する同質ニューロンに基づいている。
本研究では、SNNアーキテクチャは異種符号化方式を組み込むよう、均質に設計されるべきである、と論じる。
論文 参考訳(メタデータ) (2023-05-26T02:52:12Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
スパイキングニューラルネットワーク(SNN)は、ニューロモルフィックハードウェア上に実装された場合、有望なエネルギー効率のAIモデルである。
非分化性のため、SNNを効率的に訓練することは困難である。
本稿では,ハイパフォーマンスを実現するスパイク表現法(DSR)の差分法を提案する。
論文 参考訳(メタデータ) (2022-05-01T12:44:49Z) - A Time Encoding approach to training Spiking Neural Networks [3.655021726150368]
スパイキングニューラルネットワーク(SNN)の人気が高まっている。
本稿では、時間符号化理論を用いて、SNNの理解と学習を支援する余分なツールを提供する。
論文 参考訳(メタデータ) (2021-10-13T14:07:11Z) - Spike-inspired Rank Coding for Fast and Accurate Recurrent Neural
Networks [5.986408771459261]
生物学的スパイクニューラルネットワーク(SNN)は、その出力の情報を時間的にエンコードすることができるが、人工ニューラルネットワーク(ANN)は従来はそうではない。
ここでは、SNNにインスパイアされたランク符号化(RC)のような時間符号化が、LSTMなどの従来のANNにも適用可能であることを示す。
RCトレーニングは推論中の時間と監視を著しく低減し、精度は最小限に抑えられる。
逐次分類の2つのおもちゃ問題と、最初の入力時間ステップ後にRCモデルが99.19%の精度を達成できる時間符号化MNISTデータセットにおいて、これらを実証する。
論文 参考訳(メタデータ) (2021-10-06T15:51:38Z) - Training Energy-Efficient Deep Spiking Neural Networks with Single-Spike
Hybrid Input Encoding [5.725845886457027]
スパイキングニューラルネットワーク(SNN)は、イベント駆動型ニューロモルフィックハードウェアにおいて高い計算効率を提供する。
SNNは、非効率な入力符号化とトレーニング技術により、高い推論遅延に悩まされる。
本稿では低遅延エネルギー効率SNNのためのトレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2021-07-26T06:16:40Z) - Incorporating Learnable Membrane Time Constant to Enhance Learning of
Spiking Neural Networks [36.16846259899793]
スパイキングニューラルネットワーク(SNN)は、時間的情報処理能力、消費電力の低さ、高い生物学的信頼性により、膨大な研究関心を集めている。
既存の学習方法はウェイトのみを学習し、単一のスパイキングニューロンのダイナミクスを決定する膜関連パラメータを手動でチューニングする必要がある。
本稿では,脳の領域で膜関連パラメータが異なることの観察から着想を得て,シナプス重みだけでなく,SNNの膜時間定数も学習可能なトレーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-07-11T14:35:42Z) - You Only Spike Once: Improving Energy-Efficient Neuromorphic Inference
to ANN-Level Accuracy [51.861168222799186]
スパイキングニューラルネットワーク(英: Spiking Neural Networks、SNN)は、神経型ネットワークの一種である。
SNNはスパースであり、重量はごくわずかであり、通常、より電力集約的な乗算および累積演算の代わりに追加操作のみを使用する。
本研究では,TTFS符号化ニューロモルフィックシステムの限界を克服することを目的としている。
論文 参考訳(メタデータ) (2020-06-03T15:55:53Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
スパイキングニューラルネットワーク(SNN)は、時間的スパイクパターンを用いて情報を表現し、伝達する。
本稿では,情報符号化,シナプス可塑性,意思決定におけるスパイクタイミングダイナミクスの寄与について検討し,将来のDeepSNNやニューロモルフィックハードウェアシステムの設計への新たな視点を提供する。
論文 参考訳(メタデータ) (2020-03-26T11:13:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。