論文の概要: Performance Evaluation of Vanilla, Residual, and Dense 2D U-Net
Architectures for Skull Stripping of Augmented 3D T1-weighted MRI Head Scans
- arxiv url: http://arxiv.org/abs/2211.16570v1
- Date: Tue, 29 Nov 2022 20:11:11 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-01 17:52:04.721920
- Title: Performance Evaluation of Vanilla, Residual, and Dense 2D U-Net
Architectures for Skull Stripping of Augmented 3D T1-weighted MRI Head Scans
- Title(参考訳): 3次元T1強調MRIヘッドのスカルストリップにおけるバニラ, 残留および高密度2次元U-Netアーキテクチャの性能評価
- Authors: Anway S. Pimpalkar, Rashmika K. Patole, Ketaki D. Kamble and Mahesh H.
Shindikar
- Abstract要約: 本研究では,Skull StrippingのためのVanilla,Residual,Dense 2D U-Netアーキテクチャを比較した。
Dense 2D U-Netアーキテクチャは、テストデータセットで99.75%の精度を達成することで、VanillaとResidualのアーキテクチャよりも優れている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Skull Stripping is a requisite preliminary step in most diagnostic
neuroimaging applications. Manual Skull Stripping methods define the gold
standard for the domain but are time-consuming and challenging to integrate
into pro-cessing pipelines with a high number of data samples. Automated
methods are an active area of research for head MRI segmentation, especially
deep learning methods such as U-Net architecture implementations. This study
compares Vanilla, Residual, and Dense 2D U-Net architectures for Skull
Stripping. The Dense 2D U-Net architecture outperforms the Vanilla and Residual
counterparts by achieving an accuracy of 99.75% on a test dataset. It is
observed that dense interconnections in a U-Net encourage feature reuse across
layers of the architecture and allow for shallower models with the strengths of
a deeper network.
- Abstract(参考訳): Skull Strippingは、ほとんどの診断神経イメージング応用において必須の予備段階である。
手動Skull Strippingメソッドは、ドメインのゴールドスタンダードを定義するが、大量のデータサンプルでプロシースパイプラインを統合するのに時間がかかり、難しい。
自動化手法は頭部MRIのセグメンテーション、特にU-Netアーキテクチャ実装のようなディープラーニング手法の研究の活発な領域である。
本研究では,Skull StrippingのためのVanilla,Residual,Dense 2D U-Netアーキテクチャを比較した。
Dense 2D U-Netアーキテクチャは、テストデータセットで99.75%の精度を達成することで、VanillaとResidualのアーキテクチャよりも優れている。
U-Net内の密接な相互接続は、アーキテクチャの層をまたいだ機能の再利用を促進し、より深いネットワークの強さを持つより浅いモデルを可能にする。
関連論文リスト
- Masked LoGoNet: Fast and Accurate 3D Image Analysis for Medical Domain [48.440691680864745]
我々はLoGoNetと呼ばれる新しいニューラルネットワークアーキテクチャを導入する。
LoGoNetは、LKA(Large Kernel Attention)とデュアルエンコーディング戦略を利用して、U字型アーキテクチャに新しい特徴抽出器を統合する。
大規模ラベル付きデータセットの欠如を補うために,3次元画像に適した新しいSSL方式を提案する。
論文 参考訳(メタデータ) (2024-02-09T05:06:58Z) - SmoothNets: Optimizing CNN architecture design for differentially
private deep learning [69.10072367807095]
DPSGDは、サンプルごとの勾配の切り抜きとノイズ付けを必要とする。
これにより、非プライベートトレーニングと比較してモデルユーティリティが削減される。
SmoothNetと呼ばれる新しいモデルアーキテクチャを蒸留し,DP-SGDトレーニングの課題に対するロバスト性の向上を特徴とした。
論文 参考訳(メタデータ) (2022-05-09T07:51:54Z) - A New Backbone for Hyperspectral Image Reconstruction [90.48427561874402]
3次元ハイパースペクトル画像(HSI)再構成は、スナップショット圧縮画像の逆過程を指す。
空間/スペクトル不変Residual U-Net、すなわちSSI-ResU-Netを提案する。
SSI-ResU-Net は浮動小数点演算の 77.3% 以上で競合する性能を実現する。
論文 参考訳(メタデータ) (2021-08-17T16:20:51Z) - R2U3D: Recurrent Residual 3D U-Net for Lung Segmentation [17.343802171952195]
本稿では,3次元肺分割作業のための新しいモデルであるRecurrent Residual 3D U-Net(R2U3D)を提案する。
特に,提案モデルでは,U-Netに基づくRecurrent Residual Neural Networkに3次元畳み込みを組み込む。
提案するR2U3Dネットワークは、公開データセットLUNA16に基づいてトレーニングされ、最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2021-05-05T19:17:14Z) - PLADE-Net: Towards Pixel-Level Accuracy for Self-Supervised Single-View
Depth Estimation with Neural Positional Encoding and Distilled Matting Loss [49.66736599668501]
PLADE-Netと呼ばれる自己監視型単視点画素レベルの高精度深度推定ネットワークを提案する。
提案手法は,KITTIデータセットの$delta1$測定値の95%を超え,前例のない精度を示す。
論文 参考訳(メタデータ) (2021-03-12T15:54:46Z) - SAR-U-Net: squeeze-and-excitation block and atrous spatial pyramid
pooling based residual U-Net for automatic liver CT segmentation [3.192503074844775]
Squeeze-and-Excitation(SE)ブロック,Atrous Space Pyramid Pooling(ASPP),Resternal Learningといったテクニックを活用した,U-Netベースのフレームワークが提案されている。
提案手法の有効性を2つの公開データセットLiTS17とSLiver07で検証した。
論文 参考訳(メタデータ) (2021-03-11T02:32:59Z) - Improved Brain Age Estimation with Slice-based Set Networks [18.272915375351914]
本稿では,脳波予測のための新しいアーキテクチャを提案する。
提案アーキテクチャは, ディープ2D-CNNモデルを用いて, それぞれの2次元スライスをMRIで符号化することによって機能する。
次に、セットネットワークまたは置換不変層を用いて、これらの2Dスライス符号化の情報を組み合わせる。
英国のBiobankデータセットを用いたBrainAGE予測問題の実験では、置換不変層を持つモデルは、他の最先端のアプローチと比較して、より高速にトレーニングし、より良い予測を提供することが示された。
論文 参考訳(メタデータ) (2021-02-08T18:54:15Z) - MSDPN: Monocular Depth Prediction with Partial Laser Observation using
Multi-stage Neural Networks [1.1602089225841632]
深層学習に基づくマルチステージネットワークアーキテクチャであるMulti-Stage Depth Prediction Network (MSDPN)を提案する。
MSDPNは2次元LiDARと単眼カメラを用いて深度マップを予測する。
実験により,本ネットワークは最先端手法に対して有望な性能を示す。
論文 参考訳(メタデータ) (2020-08-04T08:27:40Z) - DC-NAS: Divide-and-Conquer Neural Architecture Search [108.57785531758076]
本稿では,ディープ・ニューラル・アーキテクチャーを効果的かつ効率的に探索するためのディバイド・アンド・コンカ(DC)手法を提案する。
ImageNetデータセットで75.1%の精度を達成しており、これは同じ検索空間を使った最先端の手法よりも高い。
論文 参考訳(メタデータ) (2020-05-29T09:02:16Z) - MetricUNet: Synergistic Image- and Voxel-Level Learning for Precise CT
Prostate Segmentation via Online Sampling [66.01558025094333]
本稿では,前立腺領域を高速に局在させる第1段階と,前立腺領域を正確に区分する第2段階の2段階のフレームワークを提案する。
マルチタスクネットワークにおけるボクセルワイドサンプリングによる新しいオンラインメトリック学習モジュールを提案する。
本手法は,従来のクロスエントロピー学習法やDice損失学習法と比較して,より代表的なボクセルレベルの特徴を効果的に学習することができる。
論文 参考訳(メタデータ) (2020-05-15T10:37:02Z) - Segmentation of Macular Edema Datasets with Small Residual 3D U-Net
Architectures [5.881334886616738]
本稿では, 深部畳み込み型ニューラルネットワークの黄斑浮腫セグメンテーション問題への応用について検討する。
一般的な信念とは対照的に、このアプリケーション設定内のニューラルアーキテクチャは、大量のトレーニングサンプルを必要とせずに、目に見えないテストイメージ上での人間レベルのパフォーマンスに近いパフォーマンスを達成することができる。
論文 参考訳(メタデータ) (2020-05-10T15:34:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。