Semisoft Task Clustering for Multi-Task Learning
- URL: http://arxiv.org/abs/2211.17204v1
- Date: Mon, 28 Nov 2022 07:23:56 GMT
- Title: Semisoft Task Clustering for Multi-Task Learning
- Authors: Yuzhao Zhang, Yifan Sun
- Abstract summary: Multi-task learning (MTL) aims to improve the performance of multiple related prediction tasks by leveraging useful information from them.
We propose a semisoft task clustering approach, which can simultaneously reveal the task clustering structure for both pure mixed tasks as well as select the relevant features.
The experimental results based on synthetic and real-world datasets validate the effectiveness and efficiency of the proposed approach.
- Score: 2.806911268410107
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-task learning (MTL) aims to improve the performance of multiple related
prediction tasks by leveraging useful information from them. Due to their
flexibility and ability to reduce unknown coefficients substantially, the
task-clustering-based MTL approaches have attracted considerable attention.
Motivated by the idea of semisoft clustering of data, we propose a semisoft
task clustering approach, which can simultaneously reveal the task cluster
structure for both pure and mixed tasks as well as select the relevant
features. The main assumption behind our approach is that each cluster has some
pure tasks, and each mixed task can be represented by a linear combination of
pure tasks in different clusters. To solve the resulting non-convex constrained
optimization problem, we design an efficient three-step algorithm. The
experimental results based on synthetic and real-world datasets validate the
effectiveness and efficiency of the proposed approach. Finally, we extend the
proposed approach to a robust task clustering problem.
Related papers
- Interpetable Target-Feature Aggregation for Multi-Task Learning based on Bias-Variance Analysis [53.38518232934096]
Multi-task learning (MTL) is a powerful machine learning paradigm designed to leverage shared knowledge across tasks to improve generalization and performance.
We propose an MTL approach at the intersection between task clustering and feature transformation based on a two-phase iterative aggregation of targets and features.
In both phases, a key aspect is to preserve the interpretability of the reduced targets and features through the aggregation with the mean, which is motivated by applications to Earth science.
arXiv Detail & Related papers (2024-06-12T08:30:16Z) - Multi-task learning via robust regularized clustering with non-convex group penalties [0.0]
Multi-task learning (MTL) aims to improve estimation performance by sharing common information among related tasks.
Existing MTL methods based on this assumption often ignore outlier tasks.
We propose a novel MTL method called MultiTask Regularized Clustering (MTLRRC)
arXiv Detail & Related papers (2024-04-04T07:09:43Z) - A Weighted K-Center Algorithm for Data Subset Selection [70.49696246526199]
Subset selection is a fundamental problem that can play a key role in identifying smaller portions of the training data.
We develop a novel factor 3-approximation algorithm to compute subsets based on the weighted sum of both k-center and uncertainty sampling objective functions.
arXiv Detail & Related papers (2023-12-17T04:41:07Z) - STG-MTL: Scalable Task Grouping for Multi-Task Learning Using Data Map [4.263847576433289]
Multi-Task Learning (MTL) is a powerful technique that has gained popularity due to its performance improvement over traditional Single-Task Learning (STL)
However, MTL is often challenging because there is an exponential number of possible task groupings.
We propose a new data-driven method that addresses these challenges and provides a scalable and modular solution for classification task grouping.
arXiv Detail & Related papers (2023-07-07T03:54:26Z) - One-step Multi-view Clustering with Diverse Representation [47.41455937479201]
We propose a one-step multi-view clustering with diverse representation method, which incorporates multi-view learning and $k$-means into a unified framework.
We develop an efficient optimization algorithm with proven convergence to solve the resultant problem.
arXiv Detail & Related papers (2023-06-08T02:52:24Z) - Multi-Task Learning with Prior Information [5.770309971945476]
We propose a multi-task learning framework, where we utilize prior knowledge about the relations between features.
We also impose a penalty on the coefficients changing for each specific feature to ensure related tasks have similar coefficients on common features shared among them.
arXiv Detail & Related papers (2023-01-04T12:48:05Z) - Variational Multi-Task Learning with Gumbel-Softmax Priors [105.22406384964144]
Multi-task learning aims to explore task relatedness to improve individual tasks.
We propose variational multi-task learning (VMTL), a general probabilistic inference framework for learning multiple related tasks.
arXiv Detail & Related papers (2021-11-09T18:49:45Z) - Semi-supervised Multi-task Learning for Semantics and Depth [88.77716991603252]
Multi-Task Learning (MTL) aims to enhance the model generalization by sharing representations between related tasks for better performance.
We propose the Semi-supervised Multi-Task Learning (MTL) method to leverage the available supervisory signals from different datasets.
We present a domain-aware discriminator structure with various alignment formulations to mitigate the domain discrepancy issue among datasets.
arXiv Detail & Related papers (2021-10-14T07:43:39Z) - Task-Feature Collaborative Learning with Application to Personalized
Attribute Prediction [166.87111665908333]
We propose a novel multi-task learning method called Task-Feature Collaborative Learning (TFCL)
Specifically, we first propose a base model with a heterogeneous block-diagonal structure regularizer to leverage the collaborative grouping of features and tasks.
As a practical extension, we extend the base model by allowing overlapping features and differentiating the hard tasks.
arXiv Detail & Related papers (2020-04-29T02:32:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.