論文の概要: Inference of Media Bias and Content Quality Using Natural-Language
Processing
- arxiv url: http://arxiv.org/abs/2212.00237v1
- Date: Thu, 1 Dec 2022 03:04:55 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-02 16:57:35.072602
- Title: Inference of Media Bias and Content Quality Using Natural-Language
Processing
- Title(参考訳): 自然言語処理によるメディアバイアスとコンテンツ品質の推定
- Authors: Zehan Chao, Denali Molitor, Deanna Needell, and Mason A. Porter
- Abstract要約: 本稿では、メディアの政治バイアスとコンテンツ品質の両方をテキストから推測する枠組みを提案する。
我々は,100万ツイート以上のデータセットに対して,双方向長短期記憶(LSTM)ニューラルネットワークを適用した。
この結果から,テキスト分析における単語順序の学習手法への活用の重要性が示唆された。
- 参考スコア(独自算出の注目度): 6.092956184948962
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Media bias can significantly impact the formation and development of opinions
and sentiments in a population. It is thus important to study the emergence and
development of partisan media and political polarization. However, it is
challenging to quantitatively infer the ideological positions of media outlets.
In this paper, we present a quantitative framework to infer both political bias
and content quality of media outlets from text, and we illustrate this
framework with empirical experiments with real-world data. We apply a
bidirectional long short-term memory (LSTM) neural network to a data set of
more than 1 million tweets to generate a two-dimensional ideological-bias and
content-quality measurement for each tweet. We then infer a ``media-bias
chart'' of (bias, quality) coordinates for the media outlets by integrating the
(bias, quality) measurements of the tweets of the media outlets. We also apply
a variety of baseline machine-learning methods, such as a naive-Bayes method
and a support-vector machine (SVM), to infer the bias and quality values for
each tweet. All of these baseline approaches are based on a bag-of-words
approach. We find that the LSTM-network approach has the best performance of
the examined methods. Our results illustrate the importance of leveraging word
order into machine-learning methods in text analysis.
- Abstract(参考訳): メディアバイアスは、集団における意見や感情の形成と発展に大きな影響を与える可能性がある。
したがって、パルチザンメディアの出現と発展と政治的分極を研究することが重要である。
しかし,メディアのイデオロギー的立場を定量的に推測することは困難である。
本稿では,テキストからメディアの政治的バイアスとコンテンツ品質の両方を推測する定量的な枠組みを提案し,実世界データを用いた実証実験により,このフレームワークについて述べる。
双方向長短期記憶(LSTM)ニューラルネットワークを100万以上のツイートのデータセットに適用し、各ツイートに対して2次元イデオロギーバイアスとコンテンツ品質測定を生成する。
次に、メディアメディアのつぶやきの(バイアス、品質)測定を統合することで、メディアメディアに対して「メディアバイアスチャート」の座標(バイアス、品質)を推測する。
また,各ツイートのバイアスと品質値を推定するために,naive-bayes法や support-vector machine (svm) など,さまざまなベースライン機械学習手法を適用した。
これらのベースラインアプローチはすべて、backer-of-wordsアプローチに基づいている。
LSTM-networkアプローチは,本手法の最適性能を示す。
本研究は,テキスト解析における機械学習手法における単語順の活用の重要性を示す。
関連論文リスト
- Mapping the Media Landscape: Predicting Factual Reporting and Political Bias Through Web Interactions [0.7249731529275342]
本稿では,最近発表されたニュースメディアの信頼性評価手法の拡張を提案する。
大規模ニュースメディアハイパーリンクグラフ上での4つの強化学習戦略の分類性能を評価する。
本実験は,2つの難解なバイアス記述子,事実報告と政治的偏見を対象とし,情報源メディアレベルでの大幅な性能向上を示した。
論文 参考訳(メタデータ) (2024-10-23T08:18:26Z) - Modeling Political Orientation of Social Media Posts: An Extended
Analysis [0.0]
オンラインソーシャルメディア上で政治的分極を特徴付ける機械学習モデルを開発することは、大きな課題である。
これらの課題は主に、注釈付きデータの欠如、ソーシャルメディアデータセットにおけるノイズの存在、膨大な量のデータなど、さまざまな要因に起因している。
本稿では、ソーシャルメディア投稿のラベル付けに、メディアバイアスと投稿コンテンツを活用する2つの方法を紹介する。
ソーシャルメディア投稿の政治的指向を予測することで,現在の機械学習モデルの性能向上を実証する。
論文 参考訳(メタデータ) (2023-11-21T03:34:20Z) - Introducing MBIB -- the first Media Bias Identification Benchmark Task
and Dataset Collection [24.35462897801079]
我々は,メディアバイアス識別ベンチマーク(MBIB)を導入し,メディアバイアスを共通の枠組みの下でグループ化する。
115のデータセットをレビューした後、9つのタスクを選択し、メディアバイアス検出技術を評価するために、22の関連するデータセットを慎重に提案する。
我々の結果は、ヘイトスピーチ、人種的偏見、性別的偏見は検出しやすいが、モデルが認知や政治的偏見といった特定のバイアスタイプを扱うのに苦労していることを示唆している。
論文 参考訳(メタデータ) (2023-04-25T20:49:55Z) - Towards Corpus-Scale Discovery of Selection Biases in News Coverage:
Comparing What Sources Say About Entities as a Start [65.28355014154549]
本稿では,大規模ニュースコーパスにおけるニュースコンテンツから直接メディア選択バイアスのパターンを発見するために,スケーラブルなNLPシステムを構築する上での課題について検討する。
我々は,世界519のニュースソースから180万件のニュース記事のコーパスであるNELA-2020のケーススタディを通じて,フレームワークの能力を示す。
論文 参考訳(メタデータ) (2023-04-06T23:36:45Z) - Bias or Diversity? Unraveling Fine-Grained Thematic Discrepancy in U.S.
News Headlines [63.52264764099532]
われわれは、2014年から2022年までの米国の主要メディアから、180万件のニュース記事の大規模なデータセットを使用している。
我々は、国内政治、経済問題、社会問題、外交の4つの主要なトピックに関連する、きめ細かいテーマの相違を定量化する。
以上の結果から,国内政治や社会問題においては,一定のメディア偏見が原因であることが示唆された。
論文 参考訳(メタデータ) (2023-03-28T03:31:37Z) - Computational Assessment of Hyperpartisanship in News Titles [55.92100606666497]
われわれはまず、超党派ニュースタイトル検出のための新しいデータセットを開発するために、人間の誘導する機械学習フレームワークを採用する。
全体的に右派メディアは比例的に超党派的なタイトルを使う傾向にある。
我々は、外国問題、政治システム、ニュースタイトルにおける過党主義を示唆する社会問題を含む3つの主要なトピックを識別する。
論文 参考訳(メタデータ) (2023-01-16T05:56:58Z) - GREENER: Graph Neural Networks for News Media Profiling [24.675574340841163]
本稿では,ウェブ上でのニュースメディアのプロファイリングの問題について,その実態と偏見について考察する。
私たちの主な焦点は、オーディエンスの重複に基づいて、メディア間の類似性をモデル化することにあります。
予測精度は2つのタスクに対して2.5-27マクロF1ポイント向上した。
論文 参考訳(メタデータ) (2022-11-10T12:46:29Z) - Cross-Domain Learning for Classifying Propaganda in Online Contents [67.10699378370752]
本稿では,ラベル付き文書や,ニュースやつぶやきからの文をベースとしたクロスドメイン学習の手法を提案する。
本実験は,本手法の有効性を実証し,移動過程におけるソースやターゲットの様々な構成における困難さと限界を同定する。
論文 参考訳(メタデータ) (2020-11-13T10:19:13Z) - Weakly-Supervised Aspect-Based Sentiment Analysis via Joint
Aspect-Sentiment Topic Embedding [71.2260967797055]
アスペクトベース感情分析のための弱教師付きアプローチを提案する。
We learn sentiment, aspects> joint topic embeddeds in the word embedding space。
次に、ニューラルネットワークを用いて単語レベルの識別情報を一般化する。
論文 参考訳(メタデータ) (2020-10-13T21:33:24Z) - Deep Learning Techniques for Future Intelligent Cross-Media Retrieval [58.20547387332133]
マルチメディア検索は、ビッグデータアプリケーションにおいて重要な役割を果たす。
マルチモーダルなディープラーニングアプローチが直面する課題に応じて,新しい分類法を提供する。
検索によく知られたクロスメディアデータセットを提示する。
論文 参考訳(メタデータ) (2020-07-21T09:49:33Z) - A multi-layer approach to disinformation detection on Twitter [4.663548775064491]
我々は,Twitter拡散ネットワークの多層表現を用い,各層に対してグローバルネットワーク機能群を計算した。
米国とイタリアでそれぞれ共有されたニュースの拡散カスケードに対応する2つの大規模データセットによる実験結果から、単純なロジスティック回帰モデルにより、偽情報と主流ネットワークを高精度に分類できることが示されている。
当社のネットワークベースのアプローチは,ソーシャルメディアに拡散する誤解を招く有害な情報を検出するシステム開発への道を開く有用な洞察を提供すると考えている。
論文 参考訳(メタデータ) (2020-02-28T09:25:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。