論文の概要: Quantum circuit fidelity estimation using machine learning
- arxiv url: http://arxiv.org/abs/2212.00677v3
- Date: Mon, 19 Dec 2022 22:38:14 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-09 20:01:13.559299
- Title: Quantum circuit fidelity estimation using machine learning
- Title(参考訳): 機械学習を用いた量子回路忠実度推定
- Authors: Avi Vadali, Rutuja Kshirsagar, Prasanth Shyamsundar, Gabriel N. Perdue
- Abstract要約: 雑音量子回路が生成する状態と理想的なノイズフリー計算に対応する対象状態との忠実度を推定する機械学習に基づく手法を提案する。
トレーニングされたモデルは、そのような手法が実現不可能なより複雑な回路の忠実さを予測できることを実証する。
- 参考スコア(独自算出の注目度): 0.4588028371034406
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The computational power of real-world quantum computers is limited by errors.
When using quantum computers to perform algorithms which cannot be efficiently
simulated classically, it is important to quantify the accuracy with which the
computation has been performed. In this work we introduce a
machine-learning-based technique to estimate the fidelity between the state
produced by a noisy quantum circuit and the target state corresponding to ideal
noise-free computation. Our machine learning model is trained in a supervised
manner, using smaller or simpler circuits for which the fidelity can be
estimated using other techniques like direct fidelity estimation and quantum
state tomography. We demonstrate that the trained model can predict the
fidelities of more complicated circuits for which such methods are infeasible.
- Abstract(参考訳): 実世界の量子コンピュータの計算能力は誤差によって制限される。
量子コンピュータを用いて、古典的に効率的にシミュレートできないアルゴリズムを実行する場合、計算が行われた精度を定量化することが重要である。
本稿では,雑音量子回路が生成する状態と,理想的なノイズフリー計算に対応する対象状態との忠実度を推定する機械学習手法を提案する。
我々の機械学習モデルは、直接忠実度推定や量子状態トモグラフィーといった他の手法を用いて、忠実度を推定できる、より小さく、より単純な回路を用いて教師付きで訓練されている。
訓練されたモデルでは、そのような手法が実現不可能であるより複雑な回路の細部を予測できることを実証する。
関連論文リスト
- Optimal Quantum Circuit Design via Unitary Neural Networks [0.0]
本稿では,量子回路モデル表現に量子アルゴリズムの機能を合成する自動手法を提案する。
この訓練されたモデルが、元のアルゴリズムと同等の量子回路モデルを効果的に生成できることを実証する。
論文 参考訳(メタデータ) (2024-08-23T16:41:15Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - A Herculean task: Classical simulation of quantum computers [4.12322586444862]
本研究は、量子コンピュータの進化を特定の操作下でエミュレートする最先端の数値シミュレーション手法について概説する。
我々は、代替手法を簡潔に言及しながら、主流のステートベクターとテンソルネットワークのパラダイムに焦点を当てる。
論文 参考訳(メタデータ) (2023-02-17T13:59:53Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
我々は、データ再ロード技術を用いて、単一のキュービットで学習するケースに焦点を当てる。
我々は、Qiskit量子コンピューティングSDKを用いて、おもちゃと現実世界のデータセットに異なる定式化を実装した。
論文 参考訳(メタデータ) (2022-11-23T18:25:32Z) - Potential and limitations of quantum extreme learning machines [55.41644538483948]
本稿では,QRCとQELMをモデル化するフレームワークを提案する。
我々の分析は、QELMとQRCの両方の機能と限界をより深く理解するための道を開いた。
論文 参考訳(メタデータ) (2022-10-03T09:32:28Z) - Establishing trust in quantum computations [0.0]
本稿では, 量子コンピュータがアルゴリズムを実行できる忠実度を計測する手法を提案する。
提案手法は,アルゴリズムの量子回路を,効率よく成功率を計測できる密接な関連回路の集合に変換する。
論文 参考訳(メタデータ) (2022-04-15T17:44:30Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
短期量子コンピュータは、小さな分子の基底状態特性を計算することができる。
計算アンサッツの構造と装置ノイズによる誤差が計算にどのように影響するかを示す。
論文 参考訳(メタデータ) (2021-12-31T16:33:10Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
量子コンピューティングの標準的なアプローチは、古典的にシミュレート可能なフォールトトレラントな演算セットを促進するという考え方に基づいている。
量子回路の古典的準確率シミュレーションをどのように促進するかを示す。
論文 参考訳(メタデータ) (2021-03-12T20:58:41Z) - Density functionals and Kohn-Sham potentials with minimal wavefunction
preparations on a quantum computer [0.0]
量子コンピュータの潜在的な応用の1つは、量子化学システムを解くことである。
本稿では,十分に強力な量子コンピュータから,機械学習モデルとしての正確な機能を得る方法を示す。
論文 参考訳(メタデータ) (2020-08-12T22:50:39Z) - A non-algorithmic approach to "programming" quantum computers via
machine learning [0.0]
機械学習はアルゴリズムを構築するための体系的な手法、すなわちアルゴリズムを非アルゴリズム的に「プログラム」量子コンピュータに利用できることを示す。
量子状態の絡み合いを実験的に推定する、基本的な非古典的な計算を用いてこれを実証する。
この結果、IBMハードウェアへの移植に成功し、ハイブリッド強化学習法を用いて訓練された。
論文 参考訳(メタデータ) (2020-07-16T13:36:21Z) - Statistical Limits of Supervised Quantum Learning [90.0289160657379]
精度の制約を考慮すると、教師付き学習のための量子機械学習アルゴリズムは入力次元における多対数ランタイムを達成できないことを示す。
より効率的な古典的アルゴリズムよりも、教師あり学習のための量子機械学習アルゴリズムの方が、ほとんどの場合スピードアップできると結論付けている。
論文 参考訳(メタデータ) (2020-01-28T17:35:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。