論文の概要: Applications of Lattice Gauge Equivariant Neural Networks
- arxiv url: http://arxiv.org/abs/2212.00832v1
- Date: Thu, 1 Dec 2022 19:32:42 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-05 18:01:55.110347
- Title: Applications of Lattice Gauge Equivariant Neural Networks
- Title(参考訳): 格子ゲージ同変ニューラルネットワークの応用
- Authors: Matteo Favoni, Andreas Ipp, David I. M\"uller
- Abstract要約: 格子ゲージ同変畳み込みニューラルネットワーク(L-CNN)
L-CNNは従来のニューラルネットワークよりも、異なるサイズの格子をより一般化することができる。
我々はL-CNNのWilsonフローや連続正規化フローへの応用の可能性について述べる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The introduction of relevant physical information into neural network
architectures has become a widely used and successful strategy for improving
their performance. In lattice gauge theories, such information can be
identified with gauge symmetries, which are incorporated into the network
layers of our recently proposed Lattice Gauge Equivariant Convolutional Neural
Networks (L-CNNs). L-CNNs can generalize better to differently sized lattices
than traditional neural networks and are by construction equivariant under
lattice gauge transformations. In these proceedings, we present our progress on
possible applications of L-CNNs to Wilson flow or continuous normalizing flow.
Our methods are based on neural ordinary differential equations which allow us
to modify link configurations in a gauge equivariant manner. For simplicity, we
focus on simple toy models to test these ideas in practice.
- Abstract(参考訳): ニューラルネットワークアーキテクチャへの関連物理情報の導入は、そのパフォーマンスを改善するために広く使われ、成功した戦略となっている。
格子ゲージ理論では,近年提案した格子ゲージ同変畳み込みニューラルネットワーク(L-CNN)のネットワーク層に組み込まれたゲージ対称性と同一視できる。
l-cnnは従来のニューラルネットワークと異なる大きさの格子に一般化することができ、格子ゲージ変換の下で構築同値である。
本稿では,L-CNNのWilsonフローや連続正規化フローへの適用の可能性について述べる。
提案手法は, ゲージ同変方法でリンク構成を修正できるニューラル常微分方程式に基づいている。
シンプルさのために、これらのアイデアを実際にテストするためのシンプルなおもちゃモデルにフォーカスします。
関連論文リスト
- Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
我々はLattice-Equivariant Neural Networks (LENNs)と呼ばれる新しい同変ニューラルネットワークのクラスを提案する。
我々の手法は、ニューラルネットワークに基づく代理モデルLattice Boltzmann衝突作用素の学習を目的とした、最近導入されたフレームワーク内で開発されている。
本研究は,実世界のシミュレーションにおける機械学習強化Lattice Boltzmann CFDの実用化に向けて展開する。
論文 参考訳(メタデータ) (2024-05-22T17:23:15Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - From NeurODEs to AutoencODEs: a mean-field control framework for
width-varying Neural Networks [68.8204255655161]
本稿では,動的に駆動する制御フィールドをベースとした,AutoencODEと呼ばれる新しいタイプの連続時間制御システムを提案する。
損失関数が局所凸な領域では,多くのアーキテクチャが復元可能であることを示す。
論文 参考訳(メタデータ) (2023-07-05T13:26:17Z) - Geometrical aspects of lattice gauge equivariant convolutional neural
networks [0.0]
格子ゲージ同変畳み込みニューラルネットワーク(L-CNN)は、非アベリア格子ゲージ理論に適用可能な畳み込みニューラルネットワークの枠組みである。
論文 参考訳(メタデータ) (2023-03-20T20:49:08Z) - Permutation Equivariant Neural Functionals [92.0667671999604]
この研究は、他のニューラルネットワークの重みや勾配を処理できるニューラルネットワークの設計を研究する。
隠れた層状ニューロンには固有の順序がないため, 深いフィードフォワードネットワークの重みに生じる置換対称性に着目する。
実験の結果, 置換同変ニューラル関数は多種多様なタスクに対して有効であることがわかった。
論文 参考訳(メタデータ) (2023-02-27T18:52:38Z) - Simple initialization and parametrization of sinusoidal networks via
their kernel bandwidth [92.25666446274188]
従来の活性化機能を持つネットワークの代替として、活性化を伴う正弦波ニューラルネットワークが提案されている。
まず,このような正弦波ニューラルネットワークの簡易版を提案する。
次に、ニューラルタンジェントカーネルの観点からこれらのネットワークの挙動を分析し、そのカーネルが調整可能な帯域幅を持つ低域フィルタを近似することを実証する。
論文 参考訳(メタデータ) (2022-11-26T07:41:48Z) - Preserving gauge invariance in neural networks [0.0]
格子ゲージ同変畳み込みニューラルネットワーク(L-CNN)
L-CNNは格子上のゲージ不変および同変関数の大きなクラスを表現することができることを示す。
論文 参考訳(メタデータ) (2021-12-21T14:08:12Z) - Lattice gauge symmetry in neural networks [0.0]
格子ゲージ同変畳み込みニューラルネットワーク(L-CNN)と呼ばれる新しいニューラルネットワークアーキテクチャについてレビューする。
我々は、ゲージ同変畳み込み層と双線型層を明示的に構築するために使用するゲージ同値の概念について議論する。
L-CNNと等価でないCNNの性能は、一見単純な非線形回帰タスクを用いて比較する。
論文 参考訳(メタデータ) (2021-11-08T11:20:11Z) - Lattice gauge equivariant convolutional neural networks [0.0]
汎用機械学習アプリケーションのためのLattice gauge equivariant Convolutional Neural Networks (L-CNNs)を提案する。
L-CNNは従来の畳み込みニューラルネットワークでは見つけられないゲージ不変量を学習・一般化できることを示した。
論文 参考訳(メタデータ) (2020-12-23T19:00:01Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
本稿では、オーバーパラメータ化ディープニューラルネットワーク(DNN)のための新しい平均場フレームワークを提案する。
このフレームワークでは、DNNは連続的な極限におけるその特徴に対する確率測度と関数によって表現される。
本稿では、標準DNNとResidual Network(Res-Net)アーキテクチャを通してフレームワークを説明する。
論文 参考訳(メタデータ) (2020-07-03T01:37:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。