Quantum simulations of Fermionic Hamiltonians with efficient encoding
and ansatz schemes
- URL: http://arxiv.org/abs/2212.01912v1
- Date: Sun, 4 Dec 2022 20:13:25 GMT
- Title: Quantum simulations of Fermionic Hamiltonians with efficient encoding
and ansatz schemes
- Authors: Benchen Huang, Nan Sheng, Marco Govoni, Giulia Galli
- Abstract summary: We propose a computational protocol for quantum simulations of Fermionic Hamiltonians on a quantum computer.
We combine a qubit-efficient encoding scheme mapping Slater determinants onto qubits with a modified qubit-coupled cluster ansatz and noise-mitigation techniques.
- Score: 0.688204255655161
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a computational protocol for quantum simulations of Fermionic
Hamiltonians on a quantum computer, enabling calculations which were previously
not feasible with conventional encoding and ansatses of variational quantum
eigensolvers (VQE). We combine a qubit-efficient encoding scheme mapping Slater
determinants onto qubits with a modified qubit-coupled cluster ansatz and
noise-mitigation techniques. Our strategy leads to a substantial improvement in
the scaling of circuit gate counts and to a decrease in the number of required
variational parameters, thus increasing the resilience to noise. We present
results for spin defects of interest for quantum technologies, going beyond
minimum models for the negatively charged nitrogen vacancy center in diamond
and the double vacancy in 4H silicon carbide (4H-SiC) and tackling a defect as
complex as negatively charged silicon vacancy in 4H-SiC for the first time.
Related papers
- Entropy-driven entanglement forging [0.0]
We show how entropy-driven entanglement forging can be used to adjust quantum simulations to the limitations of noisy intermediate-scale quantum devices.
Our findings indicate that our method, entropy-driven entanglement forging, can be used to adjust quantum simulations to the limitations of noisy intermediate-scale quantum devices.
arXiv Detail & Related papers (2024-09-06T16:54:41Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Variational quantum eigensolver for closed-shell molecules with
non-bosonic corrections [6.3235499003745455]
We introduce a simple correction scheme in the electron correlation model approximated by the geometrical mean of the bosonic terms.
We find our non-bosonic correction method reaches reliable quantum chemistry simulations at least for the tested systems.
arXiv Detail & Related papers (2023-10-11T16:47:45Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Molecular Symmetry in VQE: A Dual Approach for Trapped-Ion Simulations
of Benzene [0.2624902795082451]
Near-term strategies hinge on the use of variational quantum eigensolver (VQE) algorithms combined with a suitable ansatz.
We employ several circuit optimization methods tailored for trapped-ion quantum devices to enhance the feasibility of intricate chemical simulations.
These methods, when applied to a benzene molecule simulation, enabled the construction of an 8-qubit circuit with 69 two-qubit entangling operations.
arXiv Detail & Related papers (2023-08-01T17:03:10Z) - A self-consistent field approach for the variational quantum
eigensolver: orbital optimization goes adaptive [52.77024349608834]
We present a self consistent field approach (SCF) within the Adaptive Derivative-Assembled Problem-Assembled Ansatz Variational Eigensolver (ADAPTVQE)
This framework is used for efficient quantum simulations of chemical systems on nearterm quantum computers.
arXiv Detail & Related papers (2022-12-21T23:15:17Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - Simulating the electronic structure of spin defects on quantum computers [0.0]
We present calculations of the ground and excited state energies of spin defects in solids carried out on a quantum computer.
We focus on the negatively charged nitrogen vacancy center in diamond and on the double vacancy in 4H-SiC.
arXiv Detail & Related papers (2021-12-08T17:55:23Z) - An Algebraic Quantum Circuit Compression Algorithm for Hamiltonian
Simulation [55.41644538483948]
Current generation noisy intermediate-scale quantum (NISQ) computers are severely limited in chip size and error rates.
We derive localized circuit transformations to efficiently compress quantum circuits for simulation of certain spin Hamiltonians known as free fermions.
The proposed numerical circuit compression algorithm behaves backward stable and scales cubically in the number of spins enabling circuit synthesis beyond $mathcalO(103)$ spins.
arXiv Detail & Related papers (2021-08-06T19:38:03Z) - A posteriori corrections to the Iterative Qubit Coupled Cluster method
to minimize the use of quantum resources in large-scale calculations [0.0]
We present a variety of a posteriori corrections to the iQCC energies to reduce the number of iterations to achieve the desired accuracy.
We demonstrate the utility and efficiency of our approach numerically on the examples of 10-qubit N$$ molecule, the 24-qubit H$$O stretch, and 56-qubit singlet-triplet gap calculations.
arXiv Detail & Related papers (2020-09-28T20:57:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.