Shadow tomography from emergent state designs in analog quantum
simulators
- URL: http://arxiv.org/abs/2212.02543v2
- Date: Fri, 17 Nov 2023 16:38:55 GMT
- Title: Shadow tomography from emergent state designs in analog quantum
simulators
- Authors: Max McGinley, Michele Fava
- Abstract summary: We introduce a method that allows one to infer many properties of a quantum state using only global control.
We show that when the unitary is sufficiently entangling, a universal relationship between the statistics of the measurement outcomes and properties of the state emerges.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a method that allows one to infer many properties of a quantum
state -- including nonlinear functions such as R\'enyi entropies -- using only
global control over the constituent degrees of freedom. In this protocol, the
state of interest is first entangled with a set of ancillas under a fixed
global unitary, before projective measurements are made. We show that when the
unitary is sufficiently entangling, a universal relationship between the
statistics of the measurement outcomes and properties of the state emerges,
which can be connected to the recently discovered phenomenon of emergent
quantum state designs in chaotic systems. Thanks to this relationship,
arbitrary observables can be reconstructed using the same number of
experimental repetitions that would be required in classical shadow tomography
[Huang et al., Nat. Phys. 16, 1050 (2020)]. Unlike previous approaches to
shadow tomography, our protocol can be implemented using only global
operations, as opposed to qubit-selective logic gates, which makes it
particularly well-suited to analog quantum simulators, including ultracold
atoms in optical lattices and arrays of Rydberg atoms.
Related papers
- Emergence of global receptive fields capturing multipartite quantum correlations [0.565473932498362]
In quantum physics, even simple data with a well-defined structure at the wave function level can be characterized by extremely complex correlations.
We show that monitoring the neural network weight space while learning quantum statistics allows to develop physical intuition about complex multipartite patterns.
Our findings suggest a fresh look at constructing convolutional neural networks for processing data with non-local patterns.
arXiv Detail & Related papers (2024-08-23T12:45:40Z) - Quantum-limited generalized measurement for tunnel-coupled condensates [0.4335300149154109]
We implement a generalized measurement scheme based on controlled outcoupling of atoms.
This gives us simultaneous access to number imbalance and relative phase in a system of two tunnel-coupled 1D Bose gases.
arXiv Detail & Related papers (2024-08-13T16:06:59Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Enhanced Entanglement in the Measurement-Altered Quantum Ising Chain [46.99825956909532]
Local quantum measurements do not simply disentangle degrees of freedom, but may actually strengthen the entanglement in the system.
This paper explores how a finite density of local measurement modifies a given state's entanglement structure.
arXiv Detail & Related papers (2023-10-04T09:51:00Z) - Measuring Arbitrary Physical Properties in Analog Quantum Simulation [0.5999777817331317]
A central challenge in analog quantum simulation is to characterize desirable physical properties of quantum states produced in experiments.
We propose and analyze a scalable protocol that leverages the ergodic nature of generic quantum dynamics.
Our protocol excitingly promises to overcome limited controllability and, thus, enhance the versatility and utility of near-term quantum technologies.
arXiv Detail & Related papers (2022-12-05T19:00:01Z) - Quantum tomography of Rydberg atom graphs by configurable ancillas [1.0965065178451106]
We propose to use ancillas of which the continuously-tunable interactions can generate independent base measurements tomographically sufficient for the quantum state reconstruction of the system of interest.
Experimental tests are performed for Rydberg atom arrays in $N$-body $W$ states, of which the results demonstrate reliable high-fidelity full quantum state reconstruction of the proposed method.
arXiv Detail & Related papers (2022-11-15T06:38:01Z) - Regression of high dimensional angular momentum states of light [47.187609203210705]
We present an approach to reconstruct input OAM states from measurements of the spatial intensity distributions they produce.
We showcase our approach in a real photonic setup, generating up-to-four-dimensional OAM states through a quantum walk dynamics.
arXiv Detail & Related papers (2022-06-20T16:16:48Z) - Variational Approach to Quantum State Tomography based on Maximal
Entropy Formalism [3.6344381605841187]
We employ the maximal entropy formalism to construct the least biased mixed quantum state that is consistent with the given set of expectation values.
We employ a parameterized quantum circuit and a hybrid quantum-classical variational algorithm to obtain such a target state making our recipe easily implementable on a near-term quantum device.
arXiv Detail & Related papers (2022-06-06T01:16:22Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Quantum particle across Grushin singularity [77.34726150561087]
We study the phenomenon of transmission across the singularity that separates the two half-cylinders.
All the local realisations of the free (Laplace-Beltrami) quantum Hamiltonian are examined as non-equivalent protocols of transmission/reflection.
This allows to comprehend the distinguished status of the so-called bridging' transmission protocol previously identified in the literature.
arXiv Detail & Related papers (2020-11-27T12:53:23Z) - State preparation and measurement in a quantum simulation of the O(3)
sigma model [65.01359242860215]
We show that fixed points of the non-linear O(3) sigma model can be reproduced near a quantum phase transition of a spin model with just two qubits per lattice site.
We apply Trotter methods to obtain results for the complexity of adiabatic ground state preparation in both the weak-coupling and quantum-critical regimes.
We present and analyze a quantum algorithm based on non-unitary randomized simulation methods.
arXiv Detail & Related papers (2020-06-28T23:44:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.