Interdisciplinary Discovery of Nanomaterials Based on Convolutional
Neural Networks
- URL: http://arxiv.org/abs/2212.02805v1
- Date: Tue, 6 Dec 2022 07:51:51 GMT
- Title: Interdisciplinary Discovery of Nanomaterials Based on Convolutional
Neural Networks
- Authors: Tong Xie and Yuwei Wan and Weijian Li and Qingyuan Linghu and Shaozhou
Wang and Yalun Cai and Han Liu and Chunyu Kit and Clara Grazian and Bram Hoex
- Abstract summary: We use CNN to discover valuable experimental-based information about nanomaterials and synthesis methods in energy-material-related publications.
Our first system, TextMaster, extracts opinions from texts and classifies them into challenges and opportunities, achieving 94% and 92% accuracy, respectively.
Our second system, GraphMaster, realizes data extraction of tables and figures from publications with 98.3% classification accuracy and 4.3% data extraction mean square error.
- Score: 6.350788459498522
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The material science literature contains up-to-date and comprehensive
scientific knowledge of materials. However, their content is unstructured and
diverse, resulting in a significant gap in providing sufficient information for
material design and synthesis. To this end, we used natural language processing
(NLP) and computer vision (CV) techniques based on convolutional neural
networks (CNN) to discover valuable experimental-based information about
nanomaterials and synthesis methods in energy-material-related publications.
Our first system, TextMaster, extracts opinions from texts and classifies them
into challenges and opportunities, achieving 94% and 92% accuracy,
respectively. Our second system, GraphMaster, realizes data extraction of
tables and figures from publications with 98.3\% classification accuracy and
4.3% data extraction mean square error. Our results show that these systems
could assess the suitability of materials for a certain application by
evaluation of synthesis insights and case analysis with detailed references.
This work offers a fresh perspective on mining knowledge from scientific
literature, providing a wide swatch to accelerate nanomaterial research through
CNN.
Related papers
- Improving Molecular Modeling with Geometric GNNs: an Empirical Study [56.52346265722167]
This paper focuses on the impact of different canonicalization methods, (2) graph creation strategies, and (3) auxiliary tasks, on performance, scalability and symmetry enforcement.
Our findings and insights aim to guide researchers in selecting optimal modeling components for molecular modeling tasks.
arXiv Detail & Related papers (2024-07-11T09:04:12Z) - SciRIFF: A Resource to Enhance Language Model Instruction-Following over Scientific Literature [80.49349719239584]
We present SciRIFF (Scientific Resource for Instruction-Following and Finetuning), a dataset of 137K instruction-following demonstrations for 54 tasks.
SciRIFF is the first dataset focused on extracting and synthesizing information from research literature across a wide range of scientific fields.
arXiv Detail & Related papers (2024-06-10T21:22:08Z) - Construction and Application of Materials Knowledge Graph in Multidisciplinary Materials Science via Large Language Model [16.030268397865264]
This article introduces the Materials Knowledge Graph (MKG), which utilizes advanced natural language processing techniques.
MKG categorizes information into comprehensive labels such as Name, Formula, and Application, structured around a meticulously designed ontology.
By implementing network-based algorithms, MKG not only facilitates efficient link prediction but also significantly reduces reliance on traditional experimental methods.
arXiv Detail & Related papers (2024-04-03T21:46:14Z) - Agent-based Learning of Materials Datasets from Scientific Literature [0.0]
We develop a chemist AI agent, powered by large language models (LLMs), to create structured datasets from natural language text.
Our chemist AI agent, Eunomia, can plan and execute actions by leveraging the existing knowledge from decades of scientific research articles.
arXiv Detail & Related papers (2023-12-18T20:29:58Z) - Lessons in Reproducibility: Insights from NLP Studies in Materials
Science [4.205692673448206]
We aim to comprehend these studies from a perspective, acknowledging their significant influence on the field of materials informatics, rather than critiquing them.
Our study indicates that both papers offered thorough, tidy and well-documenteds, and clear guidance for model evaluation.
We highlight areas for improvement such as to provide access to training data where copyright restrictions permit, more transparency on model architecture and the training process, and specifications of software dependency versions.
arXiv Detail & Related papers (2023-07-28T18:36:42Z) - Materials Informatics: An Algorithmic Design Rule [0.0]
Materials informatics is a "fourth paradigm" in materials science research.
We have researched the organic semiconductor's enigmas through the materials informatics approach.
arXiv Detail & Related papers (2023-05-05T18:55:32Z) - Extracting Structured Seed-Mediated Gold Nanorod Growth Procedures from
Literature with GPT-3 [52.59930033705221]
We present a dataset of 11,644 entities extracted from 1,137 papers, resulting in 268 papers with at least one complete seed-mediated gold nanorod growth procedure and outcome for a total of 332 complete procedures.
We present a dataset of 11,644 entities extracted from 1,137 papers, resulting in papers with at least one complete seed-mediated gold nanorod growth procedure and outcome for a total of 332 complete procedures.
arXiv Detail & Related papers (2023-04-26T22:21:33Z) - Text to Insight: Accelerating Organic Materials Knowledge Extraction via
Deep Learning [1.2774526936067927]
This study aims to explore knowledge extraction for organic materials.
We built a research dataset composed of 855 annotated and 708,376 unannotated sentences drawn from 92,667 abstracts.
We used named-entity-recognition (NER) with BiLSTM-CNN-CRF deep learning model to automatically extract key knowledge from literature.
arXiv Detail & Related papers (2021-09-27T01:58:35Z) - Scientific Language Models for Biomedical Knowledge Base Completion: An
Empirical Study [62.376800537374024]
We study scientific LMs for KG completion, exploring whether we can tap into their latent knowledge to enhance biomedical link prediction.
We integrate the LM-based models with KG embedding models, using a router method that learns to assign each input example to either type of model and provides a substantial boost in performance.
arXiv Detail & Related papers (2021-06-17T17:55:33Z) - CitationIE: Leveraging the Citation Graph for Scientific Information
Extraction [89.33938657493765]
We use the citation graph of referential links between citing and cited papers.
We observe a sizable improvement in end-to-end information extraction over the state-of-the-art.
arXiv Detail & Related papers (2021-06-03T03:00:12Z) - Machine Learning in Nano-Scale Biomedical Engineering [77.75587007080894]
We review the existing research regarding the use of machine learning in nano-scale biomedical engineering.
The main challenges that can be formulated as ML problems are classified into the three main categories.
For each of the presented methodologies, special emphasis is given to its principles, applications, and limitations.
arXiv Detail & Related papers (2020-08-05T15:45:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.