Construction and Application of Materials Knowledge Graph in Multidisciplinary Materials Science via Large Language Model
- URL: http://arxiv.org/abs/2404.03080v3
- Date: Mon, 30 Sep 2024 13:46:20 GMT
- Title: Construction and Application of Materials Knowledge Graph in Multidisciplinary Materials Science via Large Language Model
- Authors: Yanpeng Ye, Jie Ren, Shaozhou Wang, Yuwei Wan, Haofen Wang, Imran Razzak, Bram Hoex, Tong Xie, Wenjie Zhang,
- Abstract summary: This article introduces the Materials Knowledge Graph (MKG), which utilizes advanced natural language processing techniques.
MKG categorizes information into comprehensive labels such as Name, Formula, and Application, structured around a meticulously designed ontology.
By implementing network-based algorithms, MKG not only facilitates efficient link prediction but also significantly reduces reliance on traditional experimental methods.
- Score: 16.030268397865264
- License:
- Abstract: Knowledge in materials science is widely dispersed across extensive scientific literature, posing significant challenges for efficient discovery and integration of new materials. Traditional methods, often reliant on costly and time-consuming experimental approaches, further complicate rapid innovation. Addressing these challenges, the integration of artificial intelligence with materials science has opened avenues for accelerating the discovery process, though it also demands precise annotation, data extraction, and traceability of information. To tackle these issues, this article introduces the Materials Knowledge Graph (MKG), which utilizes advanced natural language processing techniques, integrated with large language models to extract and systematically organize a decade's worth of high-quality research into structured triples, contains 162,605 nodes and 731,772 edges. MKG categorizes information into comprehensive labels such as Name, Formula, and Application, structured around a meticulously designed ontology, thus enhancing data usability and integration. By implementing network-based algorithms, MKG not only facilitates efficient link prediction but also significantly reduces reliance on traditional experimental methods. This structured approach not only streamlines materials research but also lays the groundwork for more sophisticated science knowledge graphs.
Related papers
- From Tokens to Materials: Leveraging Language Models for Scientific Discovery [12.211984932142537]
This study investigates the application of language model embeddings to enhance material property prediction in materials science.
We demonstrate that domain-specific models, particularly MatBERT, significantly outperform general-purpose models in extracting implicit knowledge from compound names and material properties.
arXiv Detail & Related papers (2024-10-21T16:31:23Z) - GIVE: Structured Reasoning with Knowledge Graph Inspired Veracity Extrapolation [108.2008975785364]
Graph Inspired Veracity Extrapolation (GIVE) is a novel reasoning framework that integrates the parametric and non-parametric memories.
Our method facilitates a more logical and step-wise reasoning approach akin to experts' problem-solving, rather than gold answer retrieval.
arXiv Detail & Related papers (2024-10-11T03:05:06Z) - From Text to Insight: Large Language Models for Materials Science Data Extraction [4.08853418443192]
The vast majority of materials science knowledge exists in unstructured natural language.
Structured data is crucial for innovative and systematic materials design.
The advent of large language models (LLMs) represents a significant shift.
arXiv Detail & Related papers (2024-07-23T22:23:47Z) - Agent-based Learning of Materials Datasets from Scientific Literature [0.0]
We develop a chemist AI agent, powered by large language models (LLMs), to create structured datasets from natural language text.
Our chemist AI agent, Eunomia, can plan and execute actions by leveraging the existing knowledge from decades of scientific research articles.
arXiv Detail & Related papers (2023-12-18T20:29:58Z) - Structured information extraction from complex scientific text with
fine-tuned large language models [55.96705756327738]
We present a simple sequence-to-sequence approach to joint named entity recognition and relation extraction.
The approach leverages a pre-trained large language model (LLM), GPT-3, that is fine-tuned on approximately 500 pairs of prompts.
This approach represents a simple, accessible, and highly-flexible route to obtaining large databases of structured knowledge extracted from unstructured text.
arXiv Detail & Related papers (2022-12-10T07:51:52Z) - Artificial Intelligence in Concrete Materials: A Scientometric View [77.34726150561087]
This chapter aims to uncover the main research interests and knowledge structure of the existing literature on AI for concrete materials.
To begin with, a total of 389 journal articles published from 1990 to 2020 were retrieved from the Web of Science.
Scientometric tools such as keyword co-occurrence analysis and documentation co-citation analysis were adopted to quantify features and characteristics of the research field.
arXiv Detail & Related papers (2022-09-17T18:24:56Z) - Knowledge Graph Augmented Network Towards Multiview Representation
Learning for Aspect-based Sentiment Analysis [96.53859361560505]
We propose a knowledge graph augmented network (KGAN) to incorporate external knowledge with explicitly syntactic and contextual information.
KGAN captures the sentiment feature representations from multiple perspectives, i.e., context-, syntax- and knowledge-based.
Experiments on three popular ABSA benchmarks demonstrate the effectiveness and robustness of our KGAN.
arXiv Detail & Related papers (2022-01-13T08:25:53Z) - Text to Insight: Accelerating Organic Materials Knowledge Extraction via
Deep Learning [1.2774526936067927]
This study aims to explore knowledge extraction for organic materials.
We built a research dataset composed of 855 annotated and 708,376 unannotated sentences drawn from 92,667 abstracts.
We used named-entity-recognition (NER) with BiLSTM-CNN-CRF deep learning model to automatically extract key knowledge from literature.
arXiv Detail & Related papers (2021-09-27T01:58:35Z) - Generating Knowledge Graphs by Employing Natural Language Processing and
Machine Learning Techniques within the Scholarly Domain [1.9004296236396943]
We present a new architecture that takes advantage of Natural Language Processing and Machine Learning methods for extracting entities and relationships from research publications.
Within this research work, we i) tackle the challenge of knowledge extraction by employing several state-of-the-art Natural Language Processing and Text Mining tools.
We generated a scientific knowledge graph including 109,105 triples, extracted from 26,827 abstracts of papers within the Semantic Web domain.
arXiv Detail & Related papers (2020-10-28T08:31:40Z) - Machine Learning in Nano-Scale Biomedical Engineering [77.75587007080894]
We review the existing research regarding the use of machine learning in nano-scale biomedical engineering.
The main challenges that can be formulated as ML problems are classified into the three main categories.
For each of the presented methodologies, special emphasis is given to its principles, applications, and limitations.
arXiv Detail & Related papers (2020-08-05T15:45:54Z) - ENT-DESC: Entity Description Generation by Exploring Knowledge Graph [53.03778194567752]
In practice, the input knowledge could be more than enough, since the output description may only cover the most significant knowledge.
We introduce a large-scale and challenging dataset to facilitate the study of such a practical scenario in KG-to-text.
We propose a multi-graph structure that is able to represent the original graph information more comprehensively.
arXiv Detail & Related papers (2020-04-30T14:16:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.