Bottom-up approach to room temperature quantum systems
- URL: http://arxiv.org/abs/2212.03970v1
- Date: Wed, 7 Dec 2022 22:04:03 GMT
- Title: Bottom-up approach to room temperature quantum systems
- Authors: Bochao Wei, Chao Li, Ce Pei, Chandra Raman
- Abstract summary: We have isolated and tracked very slowly moving individual atoms without the aid of laser cooling.
Results demonstrate the power and scalability of thermal ensembles for utilization in quantum memories, imaging, and other quantum information applications.
- Score: 4.730766630161825
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We demonstrate a key ingredient in a 'bottom-up' approach to building complex
quantum matter using thermal atomic vapors. We have isolated and tracked very
slowly moving individual atoms without the aid of laser cooling. Passive
filtering enabled us to carefully select atoms whose three-dimensional velocity
vector has a magnitude below $\bar{v}/20$, where $\bar{v}$ is the mean velocity
of the ensemble. Using a novel photon correlation technique, we could follow
the three-dimensional trajectory of single, slowly moving atoms for $> 1\mu$s
within a $25\mu$m field of view, with no obvious limit to the tracking ability
while simultaneously observing Rabi oscillations of these single emitters. Our
results demonstrate the power and scalability of thermal ensembles for
utilization in quantum memories, imaging, and other quantum information
applications through bottom-up approaches.
Related papers
- Cavity Quantum Electrodynamics with Atom Arrays in Free Space [0.3277163122167433]
Cavity quantum electrodynamics (cavity QED) enables the control of light-matter interactions at the single-photon level.
We propose a cavity QED architecture based on atoms trapped in free space.
We show that a pair of two-dimensional, ordered arrays of atoms can be described by conventional cavity QED parameters.
arXiv Detail & Related papers (2024-09-23T18:01:27Z) - Coherent Control of the Fine-Structure Qubit in a Single Alkaline-Earth
Atom [0.7033719572603241]
Raman coupling of qubit states promises rapid single-qubit rotations on par with the fast Rydberg-mediated two-body gates.
We demonstrate preparation, read-out, and coherent control of the qubit.
Our work opens the door for a so far unexplored qubit encoding concept for neutral atom based quantum computing.
arXiv Detail & Related papers (2024-01-19T13:22:27Z) - Quantum-enhanced sensing on an optical transition via emergent
collective quantum correlations [0.0]
We show how to harness scalable entanglement in an optical transition using 1D chains of up to 51 ions with state-dependent interactions that decay as a power-law function of the ion separation.
We demonstrate this in a Ramsey-type interferometer, where we reduce the measurement uncertainty by $-3.2 pm 0.5$ dB below the standard quantum limit for N = 51 ions.
arXiv Detail & Related papers (2023-03-19T15:41:32Z) - Bound state of distant photons in waveguide quantum electrodynamics [137.6408511310322]
Quantum correlations between distant particles remain enigmatic since the birth of quantum mechanics.
We predict a novel kind of bound quantum state in the simplest one-dimensional setup of two interacting particles in a box.
Such states could be realized in the waveguide quantum electrodynamics platform.
arXiv Detail & Related papers (2023-03-17T09:27:02Z) - Ergodicity Breaking Under Confinement in Cold-Atom Quantum Simulators [1.3367376307273382]
We consider the spin-$1/2$ quantum link formulation of $1+1$D quantum electrodynamics with a topological $theta$-angle.
We show an interplay between confinement and the ergodicity-breaking paradigms of quantum many-body scarring and Hilbert-space fragmentation.
arXiv Detail & Related papers (2023-01-18T19:00:01Z) - A shortcut to adiabaticity in a cavity with a moving mirror [58.720142291102135]
We describe for the first time how to implement shortcuts to adiabaticity in quantum field theory.
The shortcuts take place whenever there is no dynamical Casimir effect.
We obtain a fundamental limit for the efficiency of an Otto cycle with the quantum field as a working system.
arXiv Detail & Related papers (2022-02-01T20:40:57Z) - Rapid generation of all-optical $^{39}$K Bose-Einstein condensates using
a low-field Feshbach resonance [58.720142291102135]
We investigate the production of all-optical $39$K Bose-Einstein condensates with different scattering lengths using a Feshbach resonance near $33$ G.
We are able to produce fully condensed ensembles with $5.8times104$ atoms within $850$ ms evaporation time at a scattering length of $232.
Based on our findings we describe routes towards high-flux sources of ultra-cold potassium for inertial sensing.
arXiv Detail & Related papers (2022-01-12T16:39:32Z) - Entanglement between a telecom photon and an on-demand multimode
solid-state quantum memory [52.77024349608834]
We show the first demonstration of entanglement between a telecom photon and a collective spin excitation in a multimode solid-state quantum memory.
We extend the entanglement storage in the quantum memory for up to 47.7$mu$s, which could allow for the distribution of entanglement between quantum nodes separated by distances of up to 10 km.
arXiv Detail & Related papers (2021-06-09T13:59:26Z) - Collective Photon Assisted Dressing of Atomic Levels by the number $N$
of Correlated Atoms [0.0]
Many body collective correlations among the atoms, spins or, in general, quantum systems may prove to be a suitable method.
A novel operator is introduced that expresses photon-induced excitation exchange that takes in account energy conservation.
arXiv Detail & Related papers (2020-06-08T12:08:31Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z) - Quantum Simulation of 2D Quantum Chemistry in Optical Lattices [59.89454513692418]
We propose an analog simulator for discrete 2D quantum chemistry models based on cold atoms in optical lattices.
We first analyze how to simulate simple models, like the discrete versions of H and H$+$, using a single fermionic atom.
We then show that a single bosonic atom can mediate an effective Coulomb repulsion between two fermions, leading to the analog of molecular Hydrogen in two dimensions.
arXiv Detail & Related papers (2020-02-21T16:00:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.