論文の概要: Towards Practical Application of Deep Learning in Diagnosis of
Alzheimer's Disease
- arxiv url: http://arxiv.org/abs/2212.04528v1
- Date: Thu, 8 Dec 2022 19:21:51 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-12 14:36:07.919369
- Title: Towards Practical Application of Deep Learning in Diagnosis of
Alzheimer's Disease
- Title(参考訳): アルツハイマー病診断における深層学習の応用に向けて
- Authors: Harshit Parmar and Eric Walden
- Abstract要約: 有名な2D CNNの3Dバージョンは、アルツハイマー病の様々な段階の診断のために設計、訓練、およびテストされた。
ディープラーニングアプローチは、1500以上の全脳ボリュームに対して、ADの様々なステージを識別する上で、優れたパフォーマンスを示している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate diagnosis of Alzheimer's disease (AD) is both challenging and time
consuming. With a systematic approach for early detection and diagnosis of AD,
steps can be taken towards the treatment and prevention of the disease. This
study explores the practical application of deep learning models for diagnosis
of AD. Due to computational complexity, large training times and limited
availability of labelled dataset, a 3D full brain CNN (convolutional neural
network) is not commonly used, and researchers often prefer 2D CNN variants. In
this study, full brain 3D version of well-known 2D CNNs were designed, trained
and tested for diagnosis of various stages of AD. Deep learning approach shows
good performance in differentiating various stages of AD for more than 1500
full brain volumes. Along with classification, the deep learning model is
capable of extracting features which are key in differentiating the various
categories. The extracted features align with meaningful anatomical landmarks,
that are currently considered important in identification of AD by experts. An
ensemble of all the algorithm was also tested and the performance of the
ensemble algorithm was superior to any individual algorithm, further improving
diagnosis ability. The 3D versions of the trained CNNs and their ensemble have
the potential to be incorporated in software packages that can be used by
physicians/radiologists to assist them in better diagnosis of AD.
- Abstract(参考訳): アルツハイマー病(ad)の正確な診断は困難かつ時間のかかるものである。
ADの早期発見と診断のための体系的なアプローチにより、疾患の治療と予防に向けたステップを採ることができる。
本研究は,ad診断における深層学習モデルの応用について検討する。
計算複雑性、大規模なトレーニング時間、ラベル付きデータセットの限られた可用性のため、3D完全脳CNN(畳み込みニューラルネットワーク)は一般的に使われておらず、研究者はしばしば2D CNNの変種を好む。
本研究では,よく知られた2d cnnの脳3dバージョンを,様々なadステージの診断のために設計し,訓練し,テストした。
ディープラーニングのアプローチは、1500以上の全脳ボリュームでさまざまなステージのadを区別する上で、優れたパフォーマンスを示している。
分類とともに、深層学習モデルは、様々なカテゴリを識別する上で重要な特徴を抽出することができる。
抽出された特徴は有意義な解剖学的ランドマークと一致しており、現在専門家による広告の識別において重要であると考えられている。
すべてのアルゴリズムのアンサンブルもテストされ、アンサンブルアルゴリズムの性能はどのアルゴリズムよりも優れており、診断能力がさらに向上した。
トレーニングされたcnnの3dバージョンとそのアンサンブルは、adの診断を助けるために医師や放射線科医が使用できるソフトウェアパッケージに組み込まれる可能性がある。
関連論文リスト
- Towards Within-Class Variation in Alzheimer's Disease Detection from Spontaneous Speech [60.08015780474457]
アルツハイマー病(AD)の検出は、機械学習の分類モデルを使用する有望な研究領域として浮上している。
我々は、AD検出において、クラス内変異が重要な課題であると考え、ADを持つ個人は認知障害のスペクトルを示す。
本稿では,ソフトターゲット蒸留 (SoTD) とインスタンスレベルの再分散 (InRe) の2つの新しい手法を提案する。
論文 参考訳(メタデータ) (2024-09-22T02:06:05Z) - A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
神経変性疾患(神経変性疾患、ND)は、伝統的に医学的診断とモニタリングのために広範囲の医療資源と人的努力を必要とする。
重要な疾患関連運動症状として、ヒトの歩行を利用して異なるNDを特徴づけることができる。
人工知能(AI)モデルの現在の進歩は、NDの識別と分類のための自動歩行分析を可能にする。
論文 参考訳(メタデータ) (2024-05-21T06:44:40Z) - Attention-based Efficient Classification for 3D MRI Image of Alzheimer's
Disease [2.6793044027881865]
本研究では、畳み込みニューラルネットワークに基づくアルツハイマー病検出モデルを提案する。
実験結果から, 使用した2次元融合アルゴリズムは, モデルのトレーニングコストを効果的に向上させることが示された。
論文 参考訳(メタデータ) (2024-01-25T12:18:46Z) - DDxT: Deep Generative Transformer Models for Differential Diagnosis [51.25660111437394]
より単純な教師付き学習信号と自己教師付き学習信号で訓練した生成的アプローチが,現在のベンチマークにおいて優れた結果が得られることを示す。
The proposed Transformer-based generative network, named DDxT, autoregressive produce a set of possible pathology,, i. DDx, and predicts the real pathology using a neural network。
論文 参考訳(メタデータ) (2023-12-02T22:57:25Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
我々はUniBrainと呼ばれるユニバーサル脳MRI診断のための階層的知識強化事前訓練フレームワークを提案する。
具体的には、UniBrainは、定期的な診断から24,770のイメージレポートペアの大規模なデータセットを活用する。
論文 参考訳(メタデータ) (2023-09-13T09:22:49Z) - Deep Reinforcement Learning Framework for Thoracic Diseases
Classification via Prior Knowledge Guidance [49.87607548975686]
関連疾患に対するラベル付きデータの不足は、正確な診断にとって大きな課題となる。
本稿では,診断エージェントの学習を指導するための事前知識を導入する,新しい深層強化学習フレームワークを提案する。
提案手法の性能はNIHX-ray 14とCheXpertデータセットを用いて実証した。
論文 参考訳(メタデータ) (2023-06-02T01:46:31Z) - Deep grading for MRI-based differential diagnosis of Alzheimer's disease
and Frontotemporal dementia [0.0]
アルツハイマー病と前頭側頭性認知症は神経変性性認知症の一般的な形態である。
現在の構造イメージングは、主に疾患の検出に焦点をあてるが、その鑑別診断にはほとんど焦点を当てない。
本稿では,疾患検出と鑑別診断の両問題に対するディープラーニングに基づくアプローチを提案する。
論文 参考訳(メタデータ) (2022-11-25T13:25:18Z) - Towards better Interpretable and Generalizable AD detection using
Collective Artificial Intelligence [0.0]
アルツハイマー病の診断と予後を自動化するための深層学習法が提案されている。
これらの手法は、しばしば解釈可能性と一般化の欠如に悩まされる。
我々はこれらの制限を克服するために設計された新しいディープ・フレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-07T13:02:53Z) - Self Context and Shape Prior for Sensorless Freehand 3D Ultrasound
Reconstruction [61.62191904755521]
3DフリーハンドUSは、幅広い範囲とフリーフォームスキャンを提供することで、この問題に対処することを約束している。
既存のディープラーニングベースの手法は、スキルシーケンスの基本ケースのみに焦点を当てている。
複雑なスキルシーケンスを考慮したセンサレスフリーハンドUS再構成手法を提案する。
論文 参考訳(メタデータ) (2021-07-31T16:06:50Z) - Input Agnostic Deep Learning for Alzheimer's Disease Classification
Using Multimodal MRI Images [1.4848525762485871]
アルツハイマー病(英語: Alzheimer's disease、AD)は、記憶障害や機能障害を引き起こす進行性脳疾患である。
本研究では,通常の認知,軽度認知障害,ADクラスを分類するために,マルチモーダル・ディープ・ラーニング・アプローチを用いる。
論文 参考訳(メタデータ) (2021-07-19T08:19:34Z) - Deep Convolutional Neural Network based Classification of Alzheimer's
Disease using MRI data [8.609787905151563]
アルツハイマー病(Alzheimer's disease、AD)は、脳細胞を破壊し、患者の記憶に損失を引き起こす進行性および不治性の神経変性疾患である。
本稿では,不均衡な3次元MRIデータセットを用いた2次元深部畳み込みニューラルネットワーク(2D-DCNN)によるADの診断手法を提案する。
このモデルはMRIをAD、軽度認知障害、正常制御の3つのカテゴリに分類し、99.89%の分類精度を不均衡クラスで達成した。
論文 参考訳(メタデータ) (2021-01-08T06:51:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。