Optimising graph codes for measurement-based loss tolerance
- URL: http://arxiv.org/abs/2212.04834v1
- Date: Fri, 9 Dec 2022 13:06:40 GMT
- Title: Optimising graph codes for measurement-based loss tolerance
- Authors: Tom J. Bell, Love A. Pettersson, Stefano Paesani
- Abstract summary: Graph codes play an important role in photonic quantum technologies as they provide protection against qubit loss.
We develop methods to analyse and optimise measurement-based tolerance to qubit loss and computational errors for arbitrary graph codes.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph codes play an important role in photonic quantum technologies as they
provide significant protection against qubit loss, a dominant noise mechanism.
Here, we develop methods to analyse and optimise measurement-based tolerance to
qubit loss and computational errors for arbitrary graph codes. Using these
tools we identify optimised codes with up to 12 qubits and asymptotically-large
modular constructions. The developed methods enable significant benefits for
various photonic quantum technologies, as we illustrate with novel all-photonic
quantum repeater states for quantum communication and high-threshold
fusion-based schemes for fault-tolerant quantum computing.
Related papers
- Deterministic generation of concatenated graph codes from quantum emitters [0.0]
Concatenation of a fault-tolerant construction with a code able to efficiently correct loss is a promising approach to achieve this.
We propose schemes for generatingd graph codes using multi-photon emission from two quantum emitters or a single quantum emitter coupled to a memory.
We show that these schemes enable fault-tolerant fusion-based quantum regimes in practical computation with high photon loss and standard fusion gates.
arXiv Detail & Related papers (2024-06-24T14:44:23Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - The END: An Equivariant Neural Decoder for Quantum Error Correction [73.4384623973809]
We introduce a data efficient neural decoder that exploits the symmetries of the problem.
We propose a novel equivariant architecture that achieves state of the art accuracy compared to previous neural decoders.
arXiv Detail & Related papers (2023-04-14T19:46:39Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Parity-encoding-based quantum computing with Bayesian error tracking [0.0]
Measurement-based quantum computing (MBQC) in linear optical systems is promising for near-future quantum computing architecture.
We propose a linear optical topological MBQC protocol employing multiphoton qubits based on the parity encoding.
We show that our protocol is advantageous over several other existing approaches in terms of fault-tolerance, resource overhead, or feasibility of basic elements.
arXiv Detail & Related papers (2022-07-14T10:32:05Z) - Post-Training Quantization for Vision Transformer [85.57953732941101]
We present an effective post-training quantization algorithm for reducing the memory storage and computational costs of vision transformers.
We can obtain an 81.29% top-1 accuracy using DeiT-B model on ImageNet dataset with about 8-bit quantization.
arXiv Detail & Related papers (2021-06-27T06:27:22Z) - All-optical Quantum State Engineering for Rotation-symmetric Bosonic
States [0.0]
We propose and analyze a method to generate a variety of non-Gaussian states using coherent photon subtraction.
Our method can be readily implemented with current quantum photonic technologies.
arXiv Detail & Related papers (2021-05-23T22:43:23Z) - Interleaving: Modular architectures for fault-tolerant photonic quantum
computing [50.591267188664666]
Photonic fusion-based quantum computing (FBQC) uses low-loss photonic delays.
We present a modular architecture for FBQC in which these components are combined to form "interleaving modules"
Exploiting the multiplicative power of delays, each module can add thousands of physical qubits to the computational Hilbert space.
arXiv Detail & Related papers (2021-03-15T18:00:06Z) - Error-correcting entanglement swapping using a practical logical photon
encoding [0.0]
Quantum networks, modular and fusion-based quantum computing rely crucially on the ability to perform photonic Bell state measurements.
Here, we develop protocols that overcome these two key challenges through logical encoding of photonic qubits.
Our approach uses a tree graph state logical encoding, which can be produced deterministically with a few quantum emitters, and achieves near-deterministic photonic Bell state measurements while also protecting against errors including photon losses, with a record loss-tolerance threshold.
arXiv Detail & Related papers (2021-01-26T21:00:01Z) - Resource requirements for efficient quantum communication using
all-photonic graph states generated from a few matter qubits [0.0]
Long-distance quantum communication requires the use of quantum repeaters.
All-photonic approaches based on graph states generated from linear optics outperform repeater-less protocols.
We show that fast two-qubit entangling gates between matter qubits and high photon collection and detection efficiencies are the main ingredients needed for the all-photonic protocol.
arXiv Detail & Related papers (2020-05-14T18:00:00Z) - Deterministic correction of qubit loss [48.43720700248091]
Loss of qubits poses one of the fundamental obstacles towards large-scale and fault-tolerant quantum information processors.
We experimentally demonstrate the implementation of a full cycle of qubit loss detection and correction on a minimal instance of a topological surface code.
arXiv Detail & Related papers (2020-02-21T19:48:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.