Quantum advantage and stability to errors in analogue quantum simulators
- URL: http://arxiv.org/abs/2212.04924v2
- Date: Thu, 21 Dec 2023 07:14:47 GMT
- Title: Quantum advantage and stability to errors in analogue quantum simulators
- Authors: Rahul Trivedi, Adrian Franco Rubio, J. Ignacio Cirac
- Abstract summary: We consider the use of noisy analogue quantum simulators for computing physically relevant properties of many-body systems.
For the Gaussian fermion models, our analysis shows the stability of critical models which have long-range correlations.
We analyze how this stability may lead to a quantum advantage, for the problem of computing the thermodynamic limit of many-body models.
- Score: 0.3683202928838613
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Several quantum hardware platforms, while being unable to perform fully
fault-tolerant quantum computation, can still be operated as analogue quantum
simulators for addressing many-body problems. However, due to the presence of
errors, it is not clear to what extent those devices can provide us with an
advantage with respect to classical computers. In this work we consider the use
of noisy analogue quantum simulators for computing physically relevant
properties of many-body systems both in equilibrium and undergoing dynamics. We
first formulate a system-size independent notion of stability against extensive
errors, which we prove for Gaussian fermion models, as well as for a restricted
class of spin systems. Remarkably, for the Gaussian fermion models, our
analysis shows the stability of critical models which have long-range
correlations. Furthermore, we analyze how this stability may lead to a quantum
advantage, for the problem of computing the thermodynamic limit of many-body
models, in the presence of a constant error rate and without any explicit error
correction.
Related papers
- Classical Benchmarks for Variational Quantum Eigensolver Simulations of the Hubbard Model [1.1017516493649393]
We show that the error in its ground state energy and wavefunction plateaus for larger lattices, while stronger electronic correlations magnify this issue.
Our study highlights the capabilities and limitations of current approaches for solving the Hubbard model on quantum hardware.
arXiv Detail & Related papers (2024-08-01T18:00:04Z) - Stabilizing Quantum Simulators Of Gauge Theories Against $1/f$ Noise [0.0]
This thesis investigates the application of quantum simulation in the ongoing "second" quantum revolution.
Gauge theories are of particular interest in modern quantum simulators as they offer a new probe of high-energy physics on low-energy tabletop devices.
arXiv Detail & Related papers (2024-02-26T18:37:35Z) - Error-Mitigated Quantum Simulation of Interacting Fermions with Trapped
Ions [17.707261555353682]
probabilistic error cancellation (PEC) has been proposed as a general and systematic protocol.
PEC has been tested in two-qubit systems and a superconducting multi-qubit system.
We benchmark PEC using up to four trapped-ion qubits.
arXiv Detail & Related papers (2023-02-21T04:27:30Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Towards Neural Variational Monte Carlo That Scales Linearly with System
Size [67.09349921751341]
Quantum many-body problems are central to demystifying some exotic quantum phenomena, e.g., high-temperature superconductors.
The combination of neural networks (NN) for representing quantum states, and the Variational Monte Carlo (VMC) algorithm, has been shown to be a promising method for solving such problems.
We propose a NN architecture called Vector-Quantized Neural Quantum States (VQ-NQS) that utilizes vector-quantization techniques to leverage redundancies in the local-energy calculations of the VMC algorithm.
arXiv Detail & Related papers (2022-12-21T19:00:04Z) - Characterizing a non-equilibrium phase transition on a quantum computer [0.0]
We use the Quantinuum H1-1 quantum computer to realize a quantum extension of a simple classical disease spreading process.
We are able to implement large instances of the model with $73$ sites and up to $72$ circuit layers.
This work demonstrates how quantum computers capable of mid-circuit resets, measurements, and conditional logic enable the study of difficult problems in quantum many-body physics.
arXiv Detail & Related papers (2022-09-26T17:59:06Z) - Fermionic approach to variational quantum simulation of Kitaev spin
models [50.92854230325576]
Kitaev spin models are well known for being exactly solvable in a certain parameter regime via a mapping to free fermions.
We use classical simulations to explore a novel variational ansatz that takes advantage of this fermionic representation.
We also comment on the implications of our results for simulating non-Abelian anyons on quantum computers.
arXiv Detail & Related papers (2022-04-11T18:00:01Z) - Error mitigation by training with fermionic linear optics [0.05076419064097732]
We describe a method of reducing errors which is tailored to quantum algorithms for simulating fermionic systems.
The method is based on executing quantum circuits in the model of fermionic linear optics, which are known to be efficiently simulable classically.
In classical numerical simulations of 12-qubit examples with physically realistic levels of depolarising noise, errors were reduced by a factor of around 34 compared with the uncorrected case.
arXiv Detail & Related papers (2021-02-03T15:56:23Z) - Fusion-based quantum computation [43.642915252379815]
Fusion-based quantum computing (FBQC) is a model of universal quantum computation in which entangling measurements, called fusions, are performed on qubits of small constant-sized entangled resource states.
We introduce a stabilizer formalism for analyzing fault tolerance and computation in these schemes.
This framework naturally captures the error structure that arises in certain physical systems for quantum computing, such as photonics.
arXiv Detail & Related papers (2021-01-22T20:00:22Z) - Transmon platform for quantum computing challenged by chaotic
fluctuations [55.41644538483948]
We investigate the stability of a variant of a many-body localized (MBL) phase for system parameters relevant to current quantum processors.
We find that these computing platforms are dangerously close to a phase of uncontrollable chaotic fluctuations.
arXiv Detail & Related papers (2020-12-10T19:00:03Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.