論文の概要: Towards High-Order Complementary Recommendation via Logical Reasoning
Network
- arxiv url: http://arxiv.org/abs/2212.04966v1
- Date: Fri, 9 Dec 2022 16:27:03 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-12 15:47:11.968124
- Title: Towards High-Order Complementary Recommendation via Logical Reasoning
Network
- Title(参考訳): 論理的推論ネットワークによる高次補完勧告に向けて
- Authors: Longfeng Wu, Yao Zhou, Dawei Zhou
- Abstract要約: 本稿では論理的推論ネットワーク LOGIREC を提案し,製品の埋め込みを学習する。
LOGIRECは製品間の非対称的な相補関係を捉えることができる。
また,より汎用的な製品表現の学習に最適化されたハイブリッドネットワークを提案する。
- 参考スコア(独自算出の注目度): 19.232457960085625
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Complementary recommendation gains increasing attention in e-commerce since
it expedites the process of finding frequently-bought-with products for users
in their shopping journey. Therefore, learning the product representation that
can reflect this complementary relationship plays a central role in modern
recommender systems. In this work, we propose a logical reasoning network,
LOGIREC, to effectively learn embeddings of products as well as various
transformations (projection, intersection, negation) between them. LOGIREC is
capable of capturing the asymmetric complementary relationship between products
and seamlessly extending to high-order recommendations where more comprehensive
and meaningful complementary relationship is learned for a query set of
products. Finally, we further propose a hybrid network that is jointly
optimized for learning a more generic product representation. We demonstrate
the effectiveness of our LOGIREC on multiple public real-world datasets in
terms of various ranking-based metrics under both low-order and high-order
recommendation scenarios.
- Abstract(参考訳): 補完的なレコメンデーションは、買い物旅行で頻繁に商品を見つける過程を早めるため、電子商取引の注目を集めている。
したがって、この相補関係を反映できる積表現の学習は、現代の推薦システムにおいて中心的な役割を果たす。
本研究では,製品間の様々な変換(投影,交差点,否定)を効果的に学習する論理的推論ネットワークLOGIRECを提案する。
LOGIRECは製品間の非対称的な補完関係を捉え、より包括的で有意義な補完関係が製品のクエリセットで学習されるような高次のレコメンデーションにシームレスに拡張することができる。
最後に,より汎用的な製品表現の学習に最適化されたハイブリッドネットワークを提案する。
低次と高次の両方の推奨シナリオの下で、ランキングに基づく様々な指標を用いて、複数の公開現実世界データセットに対するLOGIRECの有効性を実証する。
関連論文リスト
- Topology-Aware Popularity Debiasing via Simplicial Complexes [19.378410889819165]
TSP(Test-time Simplicial Propagation)は、グラフニューラルネットワーク(GNN)の表現性を高めるために、simplicial Complex(SC)を組み込んだ。
提案手法は, SCを用いて複数順序関係を捕捉し, ユーザとイテムのインタラクションをより包括的に表現する。
提案手法はより均一なアイテム表現分布を生成し,より公平で正確なレコメンデーションを実現する。
論文 参考訳(メタデータ) (2024-11-21T07:12:47Z) - Large Language Model Empowered Embedding Generator for Sequential Recommendation [57.49045064294086]
大言語モデル(LLM)は、その人気に関係なく、項目間の意味的関係を理解する能力を持つ。
LLMEmbは、LCMを利用してアイテム埋め込みを作成し、シークエンシャル・レコメンダ・システムの性能を高める革新的な技術である。
論文 参考訳(メタデータ) (2024-09-30T03:59:06Z) - End-to-End Learnable Item Tokenization for Generative Recommendation [51.82768744368208]
本稿では,アイテムのトークン化と生成レコメンデーションをシームレスに統合した,新しいエンドツーエンド生成レコメンダであるETEGRecを提案する。
本フレームワークは、アイテムトークン化器と生成レコメンデータで構成されるデュアルエンコーダデコーダアーキテクチャに基づいて開発されている。
論文 参考訳(メタデータ) (2024-09-09T12:11:53Z) - Efficient and Deployable Knowledge Infusion for Open-World Recommendations via Large Language Models [53.547190001324665]
大規模言語モデル(LLM)からユーザとアイテムに関する2種類の外部知識を取得するためのREKIを提案する。
個別の知識抽出と個別の知識抽出を,異なるシナリオのスケールに合わせて開発し,オフラインのリソース消費を効果的に削減する。
実験によると、REKIは最先端のベースラインより優れており、多くの推奨アルゴリズムやタスクと互換性がある。
論文 参考訳(メタデータ) (2024-08-20T03:45:24Z) - DaRec: A Disentangled Alignment Framework for Large Language Model and Recommender System [83.34921966305804]
大規模言語モデル (LLM) はレコメンデーションシステムにおいて顕著な性能を示した。
LLMと協調モデルのための新しいプラグ・アンド・プレイアライメントフレームワークを提案する。
我々の手法は既存の最先端アルゴリズムよりも優れている。
論文 参考訳(メタデータ) (2024-08-15T15:56:23Z) - Two Is Better Than One: Dual Embeddings for Complementary Product
Recommendations [2.294014185517203]
製品に2つの埋め込み表現を活用することで、補足的項目の発見に新しいアプローチを適用する。
我々のモデルは実装が簡単であり、あらゆるeコマースウェブサイトで補完的なアイテムレコメンデーションを生成するための優れた候補となる。
論文 参考訳(メタデータ) (2022-11-28T00:58:21Z) - Entity-Graph Enhanced Cross-Modal Pretraining for Instance-level Product
Retrieval [152.3504607706575]
本研究の目的は, 細粒度製品カテゴリを対象とした, 弱制御型マルチモーダル・インスタンスレベルの製品検索である。
まず、Product1Mデータセットをコントリビュートし、2つの実際のインスタンスレベルの検索タスクを定義します。
我々は、マルチモーダルデータから重要な概念情報を組み込むことができるより効果的なクロスモーダルモデルを訓練するために活用する。
論文 参考訳(メタデータ) (2022-06-17T15:40:45Z) - ItemSage: Learning Product Embeddings for Shopping Recommendations at
Pinterest [60.841761065439414]
Pinterestでは、ItemSageと呼ばれるプロダクトの埋め込みセットを構築して、すべてのショッピングユースケースに適切なレコメンデーションを提供しています。
このアプローチによって、エンゲージメントとコンバージョンメトリクスが大幅に改善され、インフラストラクチャとメンテナンスコストの両方が削減された。
論文 参考訳(メタデータ) (2022-05-24T02:28:58Z) - Deep Reinforcement Learning-Based Product Recommender for Online
Advertising [1.7778609937758327]
本稿では,オンライン広告のレコメンデータシステムを設計するために,価値ベースとポリシーベースのディープRLアルゴリズムを比較した。
推奨項目のクリックスルーレート(CTR)を最大化する。
論文 参考訳(メタデータ) (2021-01-30T23:05:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。