論文の概要: Optimized Sparse Matrix Operations for Reverse Mode Automatic
Differentiation
- arxiv url: http://arxiv.org/abs/2212.05159v3
- Date: Thu, 9 Nov 2023 23:38:40 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-13 18:43:16.687295
- Title: Optimized Sparse Matrix Operations for Reverse Mode Automatic
Differentiation
- Title(参考訳): 逆モード自動微分のための最適スパース行列演算
- Authors: Nicolas Nytko, Ali Taghibakhshi, Tareq Uz Zaman, Scott MacLachlan,
Luke N. Olson, Matt West
- Abstract要約: 本稿では,PyTorch のための CSR ベースのスパース行列ラッパーの実装について述べる。
また,結果のスパースカーネルを最適化に応用し,実装や性能測定の容易さを高密度カーネルと比較した。
- 参考スコア(独自算出の注目度): 3.72826300260966
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Sparse matrix representations are ubiquitous in computational science and
machine learning, leading to significant reductions in compute time, in
comparison to dense representation, for problems that have local connectivity.
The adoption of sparse representation in leading ML frameworks such as PyTorch
is incomplete, however, with support for both automatic differentiation and GPU
acceleration missing. In this work, we present an implementation of a CSR-based
sparse matrix wrapper for PyTorch with CUDA acceleration for basic matrix
operations, as well as automatic differentiability. We also present several
applications of the resulting sparse kernels to optimization problems,
demonstrating ease of implementation and performance measurements versus their
dense counterparts.
- Abstract(参考訳): スパース行列表現は計算科学や機械学習においてユビキタスであり、局所接続性のある問題に対する密度表現と比較して計算時間を大幅に削減する。
しかし、PyTorchのような主要なMLフレームワークにおけるスパース表現の採用は不完全であり、自動微分とGPUアクセラレーションの両方が欠如している。
本稿では,PyTorch 用 CSR ベースのスパース行列ラッパーの実装と基本行列演算のためのCUDA アクセラレーション,および自動微分可能性について述べる。
また,結果のスパースカーネルを最適化に応用し,実装や性能測定の容易さを高密度カーネルと比較した。
関連論文リスト
- Stochastic Optimization for Non-convex Problem with Inexact Hessian
Matrix, Gradient, and Function [99.31457740916815]
信頼領域(TR)と立方体を用いた適応正則化は、非常に魅力的な理論的性質を持つことが証明されている。
TR法とARC法はヘッセン関数,勾配関数,関数値の非コンパクトな計算を同時に行うことができることを示す。
論文 参考訳(メタデータ) (2023-10-18T10:29:58Z) - An Efficient Algorithm for Clustered Multi-Task Compressive Sensing [60.70532293880842]
クラスタ化マルチタスク圧縮センシングは、複数の圧縮センシングタスクを解決する階層モデルである。
このモデルに対する既存の推論アルゴリズムは計算コストが高く、高次元ではうまくスケールしない。
本稿では,これらの共分散行列を明示的に計算する必要をなくし,モデル推論を大幅に高速化するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-09-30T15:57:14Z) - Performance Embeddings: A Similarity-based Approach to Automatic
Performance Optimization [71.69092462147292]
パフォーマンス埋め込みは、アプリケーション間でパフォーマンスチューニングの知識伝達を可能にする。
本研究では, 深層ニューラルネットワーク, 密度およびスパース線形代数合成, および数値風速予測ステンシルのケーススタディにおいて, この伝達チューニング手法を実証する。
論文 参考訳(メタデータ) (2023-03-14T15:51:35Z) - Batch-efficient EigenDecomposition for Small and Medium Matrices [65.67315418971688]
EigenDecomposition (ED)は多くのコンピュータビジョンアルゴリズムとアプリケーションの中心にある。
本稿では,コンピュータビジョンの応用シナリオに特化したQRベースのED手法を提案する。
論文 参考訳(メタデータ) (2022-07-09T09:14:12Z) - Softmax-free Linear Transformers [90.83157268265654]
視覚変換器(ViT)は、視覚知覚タスクの最先端を推し進めている。
既存の手法は理論的に欠陥があるか、視覚認識に経験的に効果がないかのいずれかである。
我々はSoftmax-Free Transformers (SOFT) のファミリーを提案する。
論文 参考訳(メタデータ) (2022-07-05T03:08:27Z) - Fast Differentiable Matrix Square Root and Inverse Square Root [65.67315418971688]
微分可能な行列平方根と逆平方根を計算するためのより効率的な2つの変種を提案する。
前方伝搬には, Matrix Taylor Polynomial (MTP) を用いる方法と, Matrix Pad'e Approximants (MPA) を使用する方法がある。
一連の数値実験により、両方の手法がSVDやNSの繰り返しと比較してかなりスピードアップすることが示された。
論文 参考訳(メタデータ) (2022-01-29T10:00:35Z) - Learning in High-Dimensional Feature Spaces Using ANOVA-Based Fast
Matrix-Vector Multiplication [0.0]
カーネル行列は一般に密度が高く大規模である。特徴空間の次元によっては、合理的な時間における全てのエントリの計算さえも難しい課題となる。
そこで我々は,ANOVAカーネルを用いて低次元の特徴空間に基づいて複数のカーネルを構築し,行列ベクトル積を実現する高速アルゴリズムを提案する。
特徴グループ化アプローチに基づいて,カーネルリッジ回帰と事前条件付き共役勾配解法を選択する学習手法に,高速な行列ベクトル積を組み込む方法を示す。
論文 参考訳(メタデータ) (2021-11-19T10:29:39Z) - SKIing on Simplices: Kernel Interpolation on the Permutohedral Lattice
for Scalable Gaussian Processes [39.821400341226315]
構造化カーネル補間(SKI)フレームワークは、グリッド上で効率的な行列ベクトル乗算(MVM)を行うために使用される。
我々は,SKIと多面体格子を高次元高速二元フィルタで接続する手法を開発した。
密度の大きい矩形格子の代わりにスパースsimplicial gridを用いることで、SKIよりも指数関数的に高速にGP推論を行うことができる。
また,MVMに基づく推論の大幅な高速化を可能にするSimplex-GPの実装も提供する。
論文 参考訳(メタデータ) (2021-06-12T06:04:56Z) - The Fast Kernel Transform [21.001203328543006]
本稿では,FKT(Fast Kernel Transform:高速カーネル変換)を提案する。
FKT はガウス、マテルン、ラショナル四次共分散関数や物理的に動機付けられたグリーン関数など、幅広い種類のカーネルに容易に適用できる。
本稿では、時間と精度のベンチマークを提供することによりFKTの有効性と汎用性を説明し、それを近隣埋め込み(t-SNE)とガウス過程を大規模実世界のデータセットに拡張する。
論文 参考訳(メタデータ) (2021-06-08T16:15:47Z) - Direct Spatial Implementation of Sparse Matrix Multipliers for Reservoir
Computing [0.0]
貯水池の計算システムは、非常に大きくてスパースな固定行列の繰り返し乗算に依存している。
これらの固定行列の直接実装は、計算で実行される作業を最小化する。
ビットシリアル行列乗算器の構造を提示し、正則符号付き桁表現を用いて論理利用をさらに削減する。
論文 参考訳(メタデータ) (2021-01-21T23:16:22Z) - Fast and Accurate Pseudoinverse with Sparse Matrix Reordering and
Incremental Approach [4.710916891482697]
擬逆は行列逆の一般化であり、機械学習で広く利用されている。
FastPIはスパース行列に対する新たなインクリメンタル特異値分解法(SVD)である。
我々は,FastPIが精度を損なうことなく,他の近似手法よりも高速に擬似逆計算を行うことを示す。
論文 参考訳(メタデータ) (2020-11-09T07:47:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。