論文の概要: SMM-Conv: Scalar Matrix Multiplication with Zero Packing for Accelerated Convolution
- arxiv url: http://arxiv.org/abs/2411.15659v1
- Date: Sat, 23 Nov 2024 21:43:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:21:00.513196
- Title: SMM-Conv: Scalar Matrix Multiplication with Zero Packing for Accelerated Convolution
- Title(参考訳): SMM-Conv: 高速化畳み込みのためのゼロパッケージによるスカラ行列乗算
- Authors: Amir Ofir, Gil Ben-Artzi,
- Abstract要約: 本稿では、CPUアーキテクチャの推論中に畳み込みを加速するための新しいアプローチを提案する。
ネットワークアーキテクチャを用いた実験は,既存の間接手法に比べて大幅に高速化された。
- 参考スコア(独自算出の注目度): 4.14360329494344
- License:
- Abstract: We present a novel approach for accelerating convolutions during inference for CPU-based architectures. The most common method of computation involves packing the image into the columns of a matrix (im2col) and performing general matrix multiplication (GEMM) with a matrix of weights. This results in two main drawbacks: (a) im2col requires a large memory buffer and can experience inefficient memory access, and (b) while GEMM is highly optimized for scientific matrices multiplications, it is not well suited for convolutions. We propose an approach that takes advantage of scalar-matrix multiplication and reduces memory overhead. Our experiments with commonly used network architectures demonstrate a significant speedup compared to existing indirect methods.
- Abstract(参考訳): 本稿では、CPUアーキテクチャの推論中に畳み込みを加速するための新しいアプローチを提案する。
最も一般的な計算法は、画像を行列(im2col)の列に詰め込み、重みの行列で一般化行列乗法(GEMM)を実行することである。
その結果、主な欠点が2つある。
(a) im2colは大きなメモリバッファを必要とし、非効率なメモリアクセスを体験できる。
b) GEMMは科学的行列乗法に高度に最適化されているが,畳み込みには適していない。
本稿では,スカラー行列乗算を利用してメモリオーバーヘッドを低減する手法を提案する。
ネットワークアーキテクチャを用いた実験は,既存の間接手法に比べて大幅に高速化された。
関連論文リスト
- Efficient Arbitrary Precision Acceleration for Large Language Models on GPU Tensor Cores [3.6385567224218556]
大規模言語モデル(LLM)は広く応用されているが、効率的な推論では課題に直面している。
本稿では、並列計算を容易にし、対称量子化をサポートする新しいバイポーラ-INTデータフォーマットを提案する。
ビットレベルで分解・復元する任意の精度行列乗算方式を実装し,フレキシブルな精度を実現する。
論文 参考訳(メタデータ) (2024-09-26T14:17:58Z) - An Efficient Algorithm for Clustered Multi-Task Compressive Sensing [60.70532293880842]
クラスタ化マルチタスク圧縮センシングは、複数の圧縮センシングタスクを解決する階層モデルである。
このモデルに対する既存の推論アルゴリズムは計算コストが高く、高次元ではうまくスケールしない。
本稿では,これらの共分散行列を明示的に計算する必要をなくし,モデル推論を大幅に高速化するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-09-30T15:57:14Z) - Optimized Sparse Matrix Operations for Reverse Mode Automatic
Differentiation [3.72826300260966]
本稿では,PyTorch のための CSR ベースのスパース行列ラッパーの実装について述べる。
また,結果のスパースカーネルを最適化に応用し,実装や性能測定の容易さを高密度カーネルと比較した。
論文 参考訳(メタデータ) (2022-12-10T00:46:51Z) - Batch-efficient EigenDecomposition for Small and Medium Matrices [65.67315418971688]
EigenDecomposition (ED)は多くのコンピュータビジョンアルゴリズムとアプリケーションの中心にある。
本稿では,コンピュータビジョンの応用シナリオに特化したQRベースのED手法を提案する。
論文 参考訳(メタデータ) (2022-07-09T09:14:12Z) - High-Dimensional Sparse Bayesian Learning without Covariance Matrices [66.60078365202867]
共分散行列の明示的な構成を避ける新しい推論手法を提案する。
本手法では, 数値線形代数と共役勾配アルゴリズムの対角線推定結果とを結合する。
いくつかのシミュレーションにおいて,本手法は計算時間とメモリにおける既存手法よりも拡張性が高い。
論文 参考訳(メタデータ) (2022-02-25T16:35:26Z) - Fast Differentiable Matrix Square Root and Inverse Square Root [65.67315418971688]
微分可能な行列平方根と逆平方根を計算するためのより効率的な2つの変種を提案する。
前方伝搬には, Matrix Taylor Polynomial (MTP) を用いる方法と, Matrix Pad'e Approximants (MPA) を使用する方法がある。
一連の数値実験により、両方の手法がSVDやNSの繰り返しと比較してかなりスピードアップすることが示された。
論文 参考訳(メタデータ) (2022-01-29T10:00:35Z) - Fast Differentiable Matrix Square Root [65.67315418971688]
微分可能な行列平方根を計算するために、より効率的な2つの変種を提案する。
前方伝播には, Matrix Taylor Polynomial (MTP) を用いる方法がある。
もう1つの方法は Matrix Pad'e Approximants (MPA) を使うことである。
論文 参考訳(メタデータ) (2022-01-21T12:18:06Z) - Learning in High-Dimensional Feature Spaces Using ANOVA-Based Fast
Matrix-Vector Multiplication [0.0]
カーネル行列は一般に密度が高く大規模である。特徴空間の次元によっては、合理的な時間における全てのエントリの計算さえも難しい課題となる。
そこで我々は,ANOVAカーネルを用いて低次元の特徴空間に基づいて複数のカーネルを構築し,行列ベクトル積を実現する高速アルゴリズムを提案する。
特徴グループ化アプローチに基づいて,カーネルリッジ回帰と事前条件付き共役勾配解法を選択する学習手法に,高速な行列ベクトル積を組み込む方法を示す。
論文 参考訳(メタデータ) (2021-11-19T10:29:39Z) - Efficient GPU implementation of randomized SVD and its applications [17.71779625877989]
行列分解は、次元データの圧縮やディープラーニングアルゴリズムなど、機械学習においてユビキタスである。
行列分解の典型的な解は、計算コストと時間を大幅に増大させる複雑さを持つ。
我々は,計算行列分解の計算負担を軽減するために,現代のグラフィカル処理ユニット(GPU)で並列に動作する効率的な処理操作を利用する。
論文 参考訳(メタデータ) (2021-10-05T07:42:41Z) - Fast and Accurate Pseudoinverse with Sparse Matrix Reordering and
Incremental Approach [4.710916891482697]
擬逆は行列逆の一般化であり、機械学習で広く利用されている。
FastPIはスパース行列に対する新たなインクリメンタル特異値分解法(SVD)である。
我々は,FastPIが精度を損なうことなく,他の近似手法よりも高速に擬似逆計算を行うことを示す。
論文 参考訳(メタデータ) (2020-11-09T07:47:10Z) - Sketching Transformed Matrices with Applications to Natural Language
Processing [76.6222695417524]
本稿では, 変換行列を用いて, 与えられた小さな行列の積を計算するための空間効率のよいスケッチアルゴリズムを提案する。
提案手法は誤差が小さく,空間と時間の両方で効率がよいことを示す。
論文 参考訳(メタデータ) (2020-02-23T03:07:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。