論文の概要: Online Real-time Learning of Dynamical Systems from Noisy Streaming
Data: A Koopman Operator Approach
- arxiv url: http://arxiv.org/abs/2212.05259v2
- Date: Sun, 24 Dec 2023 20:52:27 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-28 02:08:35.464199
- Title: Online Real-time Learning of Dynamical Systems from Noisy Streaming
Data: A Koopman Operator Approach
- Title(参考訳): ノイズストリームデータからの動的システムのオンラインリアルタイム学習:クープマン演算子アプローチ
- Authors: S. Sinha, Sai P. Nandanoori, David Barajas-Solano
- Abstract要約: ノイズの多い時系列データから動的システムのオンラインリアルタイム学習のための新しいアルゴリズムを提案する。
提案アルゴリズムはロバスト・クープマン演算子を用いて測定ノイズの影響を緩和する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Recent advancements in sensing and communication facilitate obtaining
high-frequency real-time data from various physical systems like power
networks, climate systems, biological networks, etc. However, since the data
are recorded by physical sensors, it is natural that the obtained data is
corrupted by measurement noise. In this paper, we present a novel algorithm for
online real-time learning of dynamical systems from noisy time-series data,
which employs the Robust Koopman operator framework to mitigate the effect of
measurement noise. The proposed algorithm has three main advantages: a) it
allows for online real-time monitoring of a dynamical system; b) it obtains a
linear representation of the underlying dynamical system, thus enabling the
user to use linear systems theory for analysis and control of the system; c) it
is computationally fast and less intensive than the popular Extended Dynamic
Mode Decomposition (EDMD) algorithm. We illustrate the efficiency of the
proposed algorithm by applying it to identify the Van der Pol oscillator, the
IEEE 68 bus system, and a ring network of Van der Pol oscillators.
- Abstract(参考訳): 近年のセンシングと通信の進歩は、電力ネットワーク、気候システム、生物学的ネットワークなど様々な物理システムから高周波リアルタイムデータを得るのに役立っている。
しかし、データは物理センサによって記録されるため、測定ノイズによって取得されたデータが破損することが自然である。
本稿では,ノイズの低減にロバストなkoopman演算子を用いた時系列データから動的システムのオンラインリアルタイム学習を行うための新しいアルゴリズムを提案する。
提案アルゴリズムには3つの利点がある。
a) 動的システムのオンラインリアルタイム監視を可能にする。
b) 基礎となる力学系の線形表現を得ることにより,ユーザがシステムの解析及び制御のために線形系理論を利用することができる。
c) 一般的な拡張動的モード分解(EDMD)アルゴリズムよりも計算速度が速く、集中度も低い。
本稿では,Van der Pol発振器,IEEE 68バスシステム,およびVan der Pol発振器のリングネットワークを同定するために提案アルゴリズムの有効性について述べる。
関連論文リスト
- Neural Harmonium: An Interpretable Deep Structure for Nonlinear Dynamic
System Identification with Application to Audio Processing [4.599180419117645]
解釈可能性(Interpretability)は、モデルを一般化し、その限界を明らかにする能力を理解するのに役立ちます。
本稿では,動的システムモデリングのための因果解釈可能な深部構造を提案する。
提案モデルは,時間周波数領域におけるシステムモデリングによる調和解析を利用する。
論文 参考訳(メタデータ) (2023-10-10T21:32:15Z) - DYNAP-SE2: a scalable multi-core dynamic neuromorphic asynchronous
spiking neural network processor [2.9175555050594975]
我々は、リアルタイムイベントベーススパイキングニューラルネットワーク(SNN)をプロトタイピングするための、脳にインスパイアされたプラットフォームを提案する。
提案システムは, 短期可塑性, NMDA ゲーティング, AMPA拡散, ホメオスタシス, スパイク周波数適応, コンダクタンス系デンドライトコンパートメント, スパイク伝達遅延などの動的および現実的なニューラル処理現象の直接エミュレーションを支援する。
異なる生物学的に可塑性のニューラルネットワークをエミュレートする柔軟性と、個体群と単一ニューロンの信号の両方をリアルタイムで監視する能力により、基礎研究とエッジコンピューティングの両方への応用のための複雑なニューラルネットワークモデルの開発と検証が可能になる。
論文 参考訳(メタデータ) (2023-10-01T03:48:16Z) - Controlling dynamical systems to complex target states using machine
learning: next-generation vs. classical reservoir computing [68.8204255655161]
機械学習を用いた非線形力学系の制御は、システムを周期性のような単純な振る舞いに駆動するだけでなく、より複雑な任意の力学を駆動する。
まず, 従来の貯水池計算が優れていることを示す。
次のステップでは、これらの結果を異なるトレーニングデータに基づいて比較し、代わりに次世代貯水池コンピューティングを使用する別のセットアップと比較する。
その結果、通常のトレーニングデータに対して同等のパフォーマンスを提供する一方で、次世代RCは、非常に限られたデータしか利用できない状況において、著しくパフォーマンスが向上していることがわかった。
論文 参考訳(メタデータ) (2023-07-14T07:05:17Z) - Sequential Learning from Noisy Data: Data-Assimilation Meets Echo-State
Network [0.0]
アンサンブルカルマンフィルタを用いた雑音観測を取り入れたエコー状態ネットワーク(ESN)のためのシーケンシャルトレーニングアルゴリズムを開発した。
その結果、カルマン訓練されたエコー状態ネットワーク(KalT-ESN)は、計算コストを抑えながら、最小二乗アルゴリズムで従来の訓練されたESNよりも優れていた。
論文 参考訳(メタデータ) (2023-04-01T02:03:08Z) - Interval Reachability of Nonlinear Dynamical Systems with Neural Network
Controllers [5.543220407902113]
本稿では、ニューラルネットワークコントローラを用いた非線形連続時間力学系の厳密な検証のための区間解析に基づく計算効率の良いフレームワークを提案する。
混合単調理論に着想を得て,ニューラルネットワークの包摂関数と開ループシステムの分解関数を用いて,閉ループ力学をより大きなシステムに組み込む。
埋め込みシステムの単一軌跡を用いて、到達可能な集合の超矩形超近似を効率的に計算できることが示される。
論文 参考訳(メタデータ) (2023-01-19T06:46:36Z) - The Predictive Forward-Forward Algorithm [79.07468367923619]
本稿では,ニューラルネットワークにおける信頼割当を行うための予測フォワード(PFF)アルゴリズムを提案する。
我々は,有向生成回路と表現回路を同時に同時に学習する,新しい動的リカレントニューラルネットワークを設計する。
PFFは効率よく学習し、学習信号を伝達し、フォワードパスのみでシナプスを更新する。
論文 参考訳(メタデータ) (2023-01-04T05:34:48Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
現代の力学系はますます非線形で複雑なものになりつつある。
予測と制御のためのコンパクトで包括的な表現でこれらのシステムをモデル化するフレームワークが必要である。
本手法は,教師付き学習手法を用いてこれらの基礎関数を学習する。
論文 参考訳(メタデータ) (2021-09-06T04:39:06Z) - DySMHO: Data-Driven Discovery of Governing Equations for Dynamical
Systems via Moving Horizon Optimization [77.34726150561087]
本稿では,スケーラブルな機械学習フレームワークである移動水平最適化(DySMHO)による動的システムの発見について紹介する。
DySMHOは、基底関数の大きな辞書から基礎となる支配方程式を逐次学習する。
標準非線形力学系の例は、DySMHOが規則を正確に回復できることを示すために用いられる。
論文 参考訳(メタデータ) (2021-07-30T20:35:03Z) - KalmanNet: Neural Network Aided Kalman Filtering for Partially Known
Dynamics [84.18625250574853]
KalmanNetは、データから学習し、非線形力学の下でKalmanフィルタを実行するリアルタイム状態推定器である。
我々は、KalmanNetが非線形性とモデルミスマッチを克服し、古典的なフィルタリング手法より優れていることを数値的に示す。
論文 参考訳(メタデータ) (2021-07-21T12:26:46Z) - Inferring, Predicting, and Denoising Causal Wave Dynamics [3.9407250051441403]
DISTANA(Distributed Artificial Neural Network Architecture)は、グラフ畳み込みニューラルネットワークである。
DISTANAは、再帰パターンが観測されるので、データストリームを飾るのに非常に適していることを示す。
安定かつ正確なクローズドループ予測を数百の時間ステップで生成する。
論文 参考訳(メタデータ) (2020-09-19T08:33:53Z) - Online Reinforcement Learning Control by Direct Heuristic Dynamic
Programming: from Time-Driven to Event-Driven [80.94390916562179]
時間駆動学習は、新しいデータが到着すると予測モデルのパラメータを継続的に更新する機械学習手法を指す。
ノイズなどの重要なシステムイベントによる時間駆動型dHDPの更新を防止することが望ましい。
イベント駆動型dHDPアルゴリズムは,従来の時間駆動型dHDPと比較して動作することを示す。
論文 参考訳(メタデータ) (2020-06-16T05:51:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。