論文の概要: DySMHO: Data-Driven Discovery of Governing Equations for Dynamical
Systems via Moving Horizon Optimization
- arxiv url: http://arxiv.org/abs/2108.00069v1
- Date: Fri, 30 Jul 2021 20:35:03 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-05 06:28:52.240168
- Title: DySMHO: Data-Driven Discovery of Governing Equations for Dynamical
Systems via Moving Horizon Optimization
- Title(参考訳): DySMHO: 移動水平最適化による動的システムのGoverning方程式のデータ駆動発見
- Authors: Fernando Lejarza and Michael Baldea
- Abstract要約: 本稿では,スケーラブルな機械学習フレームワークである移動水平最適化(DySMHO)による動的システムの発見について紹介する。
DySMHOは、基底関数の大きな辞書から基礎となる支配方程式を逐次学習する。
標準非線形力学系の例は、DySMHOが規則を正確に回復できることを示すために用いられる。
- 参考スコア(独自算出の注目度): 77.34726150561087
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Discovering the governing laws underpinning physical and chemical phenomena
is a key step towards understanding and ultimately controlling systems in
science and engineering. We introduce Discovery of Dynamical Systems via Moving
Horizon Optimization (DySMHO), a scalable machine learning framework for
identifying governing laws in the form of differential equations from
large-scale noisy experimental data sets. DySMHO consists of a novel moving
horizon dynamic optimization strategy that sequentially learns the underlying
governing equations from a large dictionary of basis functions. The sequential
nature of DySMHO allows leveraging statistical arguments for eliminating
irrelevant basis functions, avoiding overfitting to recover accurate and
parsimonious forms of the governing equations. Canonical nonlinear dynamical
system examples are used to demonstrate that DySMHO can accurately recover the
governing laws, is robust to high levels of measurement noise and that it can
handle challenges such as multiple time scale dynamics.
- Abstract(参考訳): 物理現象と化学現象を支える統治法を明らかにすることは、科学と工学のシステムを理解し、最終的に制御する重要なステップである。
本研究では、大規模雑音データから微分方程式の形で法則を識別するスケーラブルな機械学習フレームワークである移動水平最適化(DySMHO)による動的システムの発見を紹介する。
DySMHOは、基底関数の大きな辞書から基礎となる支配方程式を逐次学習する新しい移動地平線動的最適化戦略で構成されている。
DySMHOのシーケンシャルな性質は、非関係基底関数の除去に統計的議論を活用することを可能にし、オーバーフィッティングを回避し、支配方程式の正確で同相な形式を復元する。
標準非線形力学系の例は、DySMHOが規則を正確に回復でき、高いレベルの測定ノイズに頑健であり、多重時間スケール力学のような課題に対処できることを示すために用いられる。
関連論文リスト
- Governing equation discovery of a complex system from snapshots [11.803443731299677]
スナップショットからの微分方程式のスパース同定 (Sparse Identification of Differential Equations from Snapshots (SpIDES)) と呼ばれるデータ駆動型シミュレーションフリーフレームワークを導入する。
SpIDESは、高度な機械学習技術を利用してスナップショットから複雑なシステムの制御方程式を発見する。
2つの潜在的な井戸に閉じ込められた過剰損傷ランゲヴィン系の支配方程式を同定し,SpIDESの有効性とロバスト性を検証した。
論文 参考訳(メタデータ) (2024-10-22T04:55:12Z) - Discovering Governing equations from Graph-Structured Data by Sparse Identification of Nonlinear Dynamical Systems [0.27624021966289597]
グラフ構造化データ(SINDyG)から動的システムのスパース同定法を開発した。
SINDyGは、ネットワーク構造をスパースレグレッションに組み込んで、基礎となるネットワーク力学を説明するモデルパラメータを識別する。
論文 参考訳(メタデータ) (2024-09-02T17:51:37Z) - Learning System Dynamics without Forgetting [60.08612207170659]
未知の力学を持つ系の軌道予測は、物理学や生物学を含む様々な研究分野において重要である。
本稿では,モードスイッチンググラフODE (MS-GODE) の新たなフレームワークを提案する。
生体力学の異なる多様な系を特徴とする生体力学システムの新しいベンチマークを構築した。
論文 参考訳(メタデータ) (2024-06-30T14:55:18Z) - AI-Lorenz: A physics-data-driven framework for black-box and gray-box
identification of chaotic systems with symbolic regression [2.07180164747172]
複雑な動的挙動をモデル化した数学的表現を学習するフレームワークを開発する。
私たちは、システムのダイナミクス、時間の変化率、モデル用語の欠如を学ぶために、小さなニューラルネットワークをトレーニングします。
これにより、動的挙動の将来的な進化を予測することができる。
論文 参考訳(メタデータ) (2023-12-21T18:58:41Z) - Controlling dynamical systems to complex target states using machine
learning: next-generation vs. classical reservoir computing [68.8204255655161]
機械学習を用いた非線形力学系の制御は、システムを周期性のような単純な振る舞いに駆動するだけでなく、より複雑な任意の力学を駆動する。
まず, 従来の貯水池計算が優れていることを示す。
次のステップでは、これらの結果を異なるトレーニングデータに基づいて比較し、代わりに次世代貯水池コンピューティングを使用する別のセットアップと比較する。
その結果、通常のトレーニングデータに対して同等のパフォーマンスを提供する一方で、次世代RCは、非常に限られたデータしか利用できない状況において、著しくパフォーマンスが向上していることがわかった。
論文 参考訳(メタデータ) (2023-07-14T07:05:17Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
本稿では,その潜在表現内でのシステム入力の変動をキャプチャする構造付き潜在ODEモデルを提案する。
静的変数仕様に基づいて,本モデルではシステムへの入力毎の変動要因を学習し,潜在空間におけるシステム入力の影響を分離する。
論文 参考訳(メタデータ) (2022-02-25T20:00:56Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
データ駆動モデリングは、真のシステムの観測からシステムの力学の近似を学ぼうとする代替パラダイムである。
本稿では,ニューラルネットワークを用いた動的システムのモデル構築方法について検討する。
基礎的な概要に加えて、関連する文献を概説し、このモデリングパラダイムが克服すべき数値シミュレーションから最も重要な課題を概説する。
論文 参考訳(メタデータ) (2021-11-02T10:51:42Z) - Physics-informed Spline Learning for Nonlinear Dynamics Discovery [8.546520029145853]
非線形ダイナミクスの準同次制御方程式を発見するための物理インフォメーションスプライン学習フレームワークを提案する。
このフレームワークは、わずかにサンプリングされたノイズデータに基づいている。
提案手法の有効性と優位性は,複数の非線形力学系によって実証されている。
論文 参考訳(メタデータ) (2021-05-05T23:32:43Z) - Controlling nonlinear dynamical systems into arbitrary states using
machine learning [77.34726150561087]
機械学習(ML)を活用した,新しい完全データ駆動制御方式を提案する。
最近開発されたMLに基づく複雑なシステムの予測機能により、非線形系は任意の初期状態から来る任意の動的対象状態に留まることが証明された。
必要なデータ量が少なく,柔軟性の高いコントロールスキームを備えることで,工学から医学まで幅広い応用の可能性について簡単に議論する。
論文 参考訳(メタデータ) (2021-02-23T16:58:26Z) - Symplectic ODE-Net: Learning Hamiltonian Dynamics with Control [14.24939133094439]
物理系の力学を推論できるディープラーニングフレームワークであるSymlectic ODE-Net(SymODEN)を紹介する。
特に、ハミルトン力学を制御して、基礎となる力学を透過的に学習する。
このフレームワークは、物理的システムに対して解釈可能で物理的に一貫性のあるモデルを提供することで、モデルベースの制御戦略を合成する新たな可能性を開く。
論文 参考訳(メタデータ) (2019-09-26T13:13:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。