論文の概要: Stochastic First-Order Learning for Large-Scale Flexibly Tied Gaussian
Mixture Model
- arxiv url: http://arxiv.org/abs/2212.05402v3
- Date: Sat, 11 Nov 2023 17:39:22 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-14 22:41:15.216667
- Title: Stochastic First-Order Learning for Large-Scale Flexibly Tied Gaussian
Mixture Model
- Title(参考訳): 大規模フレキシブルタイトガウス混合モデルの確率的1次学習
- Authors: Mohammad Pasande, Reshad Hosseini, Babak Nadjar Araabi
- Abstract要約: ガウス混合モデル(GMM)の多様体上での新しい最適化アルゴリズムを提案する。
我々は,予測最大化アルゴリズムを,より高い確率で達成し,収束のエポックを少なくし,各エポックあたりの時間を少なくすることができることを観察した。
- 参考スコア(独自算出の注目度): 3.4546761246181696
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Gaussian Mixture Models (GMMs) are one of the most potent parametric density
models used extensively in many applications. Flexibly-tied factorization of
the covariance matrices in GMMs is a powerful approach for coping with the
challenges of common GMMs when faced with high-dimensional data and complex
densities which often demand a large number of Gaussian components. However,
the expectation-maximization algorithm for fitting flexibly-tied GMMs still
encounters difficulties with streaming and very large dimensional data. To
overcome these challenges, this paper suggests the use of first-order
stochastic optimization algorithms. Specifically, we propose a new stochastic
optimization algorithm on the manifold of orthogonal matrices. Through numerous
empirical results on both synthetic and real datasets, we observe that
stochastic optimization methods can outperform the expectation-maximization
algorithm in terms of attaining better likelihood, needing fewer epochs for
convergence, and consuming less time per each epoch.
- Abstract(参考訳): ガウス混合モデル(gmms)は、多くの応用で広く使われている最も強力なパラメトリック密度モデルの一つである。
GMMにおける共分散行列の柔軟な分解は、多くのガウス成分を必要とする高次元データや複素密度に直面した場合の共通GMMの課題に対処するための強力なアプローチである。
しかし, フレキシブルタイトGMMを適合させるための期待最大化アルゴリズムは, ストリーミングや非常に大きな次元データに難航している。
これらの課題を克服するために,一階確率最適化アルゴリズムを提案する。
具体的には、直交行列の多様体上の新しい確率最適化アルゴリズムを提案する。
合成データセットと実データセットの両方における多くの実験結果を通して、確率的最適化手法は、より良い可能性の達成、収束のエポックの低減、各エポック毎の時間の短縮という観点で予測-最大化アルゴリズムより優れていることが観察された。
関連論文リスト
- A Stochastic Approach to Bi-Level Optimization for Hyperparameter Optimization and Meta Learning [74.80956524812714]
我々は,現代のディープラーニングにおいて広く普及している一般的なメタ学習問題に対処する。
これらの問題は、しばしばBi-Level Optimizations (BLO)として定式化される。
我々は,与えられたBLO問題を,内部損失関数が滑らかな分布となり,外損失が内部分布に対する期待損失となるようなii最適化に変換することにより,新たな視点を導入する。
論文 参考訳(メタデータ) (2024-10-14T12:10:06Z) - A unified consensus-based parallel ADMM algorithm for high-dimensional
regression with combined regularizations [3.280169909938912]
並列交互乗算器 (ADMM) は大規模分散データセットの処理に有効であることが広く認識されている。
提案アルゴリズムは,財務事例の信頼性,安定性,スケーラビリティを示す。
論文 参考訳(メタデータ) (2023-11-21T03:30:38Z) - Federated Conditional Stochastic Optimization [110.513884892319]
条件付き最適化は、不変学習タスク、AUPRC、AMLなど、幅広い機械学習タスクで見られる。
本稿では,分散フェデレーション学習のためのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-04T01:47:37Z) - Algorithme EM r\'egularis\'e [0.0]
本稿では,より少ないサンプルサイズに対応するために,事前知識を効率的に活用するEMアルゴリズムの正規化バージョンを提案する。
実データを用いた実験では,クラスタリングのための提案アルゴリズムの性能が向上した。
論文 参考訳(メタデータ) (2023-07-04T23:19:25Z) - Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood
Estimation for Latent Gaussian Models [69.22568644711113]
我々は,モンテカルロサンプリングと反復線形解法を組み合わせた確率的アンローリングを導入し,行列逆転を回避した。
理論的解析により,解法の繰り返しによる解法の解法と逆転が最大値推定の勾配推定を高速化することを示した。
シミュレーションおよび実データ実験において、確率的アンロールは、モデル性能の損失を最小限に抑えながら、勾配EMよりも桁違いに高速な潜在ガウスモデルを学習することを示した。
論文 参考訳(メタデータ) (2023-06-05T21:08:34Z) - Regularized EM algorithm [9.367612782346205]
本稿では,従来の知識を効率的に活用し,LSSの状況に対処できる,GMM-sの正規化EMアルゴリズムを提案する。
コンバージェンスホールドの理論的保証は、構造化共分散行列モデルや低サンプル設定のEMアルゴリズムの性能向上につながることを示す。
論文 参考訳(メタデータ) (2023-03-27T08:32:20Z) - A distribution-free mixed-integer optimization approach to hierarchical modelling of clustered and longitudinal data [0.0]
我々は,新しいデータポイントに対するクラスタ効果を評価する革新的なアルゴリズムを導入し,このモデルのロバスト性や精度を高める。
このアプローチの推論的および予測的効果は、学生のスコアリングとタンパク質発現に適用することでさらに説明される。
論文 参考訳(メタデータ) (2023-02-06T23:34:51Z) - Regularization and Optimization in Model-Based Clustering [4.096453902709292]
k-平均アルゴリズムの変種は、本質的に同じ球面ガウスの混合と、そのような分布から大きく逸脱するデータに適合する。
一般のGMMに対してより効率的な最適化アルゴリズムを開発し、これらのアルゴリズムと正規化戦略を組み合わせ、過度な適合を避ける。
これらの結果から, GMM と k-means 法の間の現状に新たな光を当て, 一般 GMM をデータ探索に利用することが示唆された。
論文 参考訳(メタデータ) (2023-02-05T18:22:29Z) - Cauchy-Schwarz Regularized Autoencoder [68.80569889599434]
変分オートエンコーダ(VAE)は、強力で広く使われている生成モデルのクラスである。
GMMに対して解析的に計算できるCauchy-Schwarz分散に基づく新しい制約対象を導入する。
本研究の目的は,密度推定,教師なしクラスタリング,半教師なし学習,顔分析における変分自動エンコーディングモデルの改善である。
論文 参考訳(メタデータ) (2021-01-06T17:36:26Z) - Generalized Matrix Factorization: efficient algorithms for fitting
generalized linear latent variable models to large data arrays [62.997667081978825]
一般化線形潜在変数モデル(GLLVM)は、そのような因子モデルを非ガウス応答に一般化する。
GLLVMのモデルパラメータを推定する現在のアルゴリズムは、集約的な計算を必要とし、大規模なデータセットにスケールしない。
本稿では,GLLVMを高次元データセットに適用するための新しい手法を提案する。
論文 参考訳(メタデータ) (2020-10-06T04:28:19Z) - Learning Gaussian Graphical Models via Multiplicative Weights [54.252053139374205]
乗算重み更新法に基づいて,Klivans と Meka のアルゴリズムを適用した。
アルゴリズムは、文献の他のものと質的に類似したサンプル複雑性境界を楽しみます。
ランタイムが低い$O(mp2)$で、$m$サンプルと$p$ノードの場合には、簡単にオンライン形式で実装できる。
論文 参考訳(メタデータ) (2020-02-20T10:50:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。