論文の概要: Empirical Analysis of AI-based Energy Management in Electric Vehicles: A
Case Study on Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2212.09154v1
- Date: Sun, 18 Dec 2022 20:12:20 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-20 15:19:43.322341
- Title: Empirical Analysis of AI-based Energy Management in Electric Vehicles: A
Case Study on Reinforcement Learning
- Title(参考訳): 電気自動車におけるAIによるエネルギー管理の実証分析:強化学習を事例として
- Authors: Jincheng Hu, Yang Lin, Jihao Li, Zhuoran Hou, Dezong Zhao, Quan Zhou,
Jingjing Jiang and Yuanjian Zhang
- Abstract要約: 強化学習ベース(RLベース)エネルギー管理戦略(EMS)は、複数の電力源を持つ電気自動車のエネルギー管理において有望な解決策であると考えられる。
本稿では, プラグインハイブリッド電気自動車 (PHEV) と燃料電池電気自動車 (FCEV) におけるRL系EMSの実証分析について述べる。
- 参考スコア(独自算出の注目度): 9.65075615023066
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement learning-based (RL-based) energy management strategy (EMS) is
considered a promising solution for the energy management of electric vehicles
with multiple power sources. It has been shown to outperform conventional
methods in energy management problems regarding energy-saving and real-time
performance. However, previous studies have not systematically examined the
essential elements of RL-based EMS. This paper presents an empirical analysis
of RL-based EMS in a Plug-in Hybrid Electric Vehicle (PHEV) and Fuel Cell
Electric Vehicle (FCEV). The empirical analysis is developed in four aspects:
algorithm, perception and decision granularity, hyperparameters, and reward
function. The results show that the Off-policy algorithm effectively develops a
more fuel-efficient solution within the complete driving cycle compared with
other algorithms. Improving the perception and decision granularity does not
produce a more desirable energy-saving solution but better balances battery
power and fuel consumption. The equivalent energy optimization objective based
on the instantaneous state of charge (SOC) variation is parameter sensitive and
can help RL-EMSs to achieve more efficient energy-cost strategies.
- Abstract(参考訳): 強化学習ベース(RLベース)エネルギー管理戦略(EMS)は、複数の電力源を持つ電気自動車のエネルギー管理において有望な解決策であると考えられる。
省エネとリアルタイム性能に関するエネルギー管理問題において,従来の手法を上回っていることが示されている。
しかし、従来の研究では、RLベースのEMSの本質的要素を体系的に検討していない。
本稿では, プラグインハイブリッド電気自動車 (PHEV) と燃料電池電気自動車 (FCEV) におけるRL系EMSの実証分析を行った。
実験分析は、アルゴリズム、知覚と決定の粒度、ハイパーパラメータ、報酬関数の4つの側面で開発された。
その結果、オフポリシーアルゴリズムは、他のアルゴリズムと比較して、完全な駆動サイクル内でより燃費効率の良い解を効果的に開発することを示した。
認識と意思決定の粒度を改善することは、より望ましい省エネソリューションを生み出しないが、バッテリーの電力と燃料消費量のバランスを良くする。
瞬時電荷状態(soc)変動に基づく等価エネルギー最適化の目標はパラメータに敏感であり、rl-emssがより効率的なエネルギーコスト戦略を達成するのに役立つ。
関連論文リスト
- Data-driven modeling and supervisory control system optimization for plug-in hybrid electric vehicles [16.348774515562678]
プラグインハイブリッド電気自動車(PHEV)のための学習型インテリジェントエネルギー管理システムは,効率的なエネルギー利用の実現に不可欠である。
彼らのアプリケーションは現実世界でシステム信頼性の課題に直面しており、元の機器メーカー(OEM)が広く受け入れられることを防ぐ。
本稿では,水平延長型強化学習(RL)に基づくエネルギー管理と等価消費最小化戦略(ECMS)を組み合わせた実車用アプリケーション指向制御フレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-13T13:04:42Z) - On Feature Diversity in Energy-based Models [98.78384185493624]
エネルギーベースモデル(EBM)は通常、異なる特徴の組み合わせを学習し、入力構成ごとにエネルギーマッピングを生成する内部モデルによって構成される。
EBMのほぼ正しい(PAC)理論を拡張し,EBMの性能に及ぼす冗長性低減の影響を解析した。
論文 参考訳(メタデータ) (2023-06-02T12:30:42Z) - Towards Optimal Energy Management Strategy for Hybrid Electric Vehicle
with Reinforcement Learning [5.006685959891296]
強化学習(Reinforcement Learning, RL)は、知的制御戦略を学習するための効果的なソリューションであることが証明されている。
本稿では, FASTSim というオープンソースの車両シミュレーションツールと RL ベースの EMS を実装し, 統合する新しいフレームワークを提案する。
学習したRLベースのEMSは、異なるテスト駆動サイクルを用いて様々な車両モデル上で評価され、エネルギー効率の向上に有効であることが証明された。
論文 参考訳(メタデータ) (2023-05-21T06:29:17Z) - Energy Management of Multi-mode Plug-in Hybrid Electric Vehicle using
Multi-agent Deep Reinforcement Learning [6.519522573636577]
多モードプラグインハイブリッド電気自動車(PHEV)技術は、脱炭に寄与する経路の1つである。
本稿では,多モードPHEVのエネルギー管理のためのマルチエージェント深部強化学習(MADRL)制御法について検討する。
統合DDPG設定と0.2の関連性比を用いて、MADRLシステムはシングルエージェント学習システムと比較して最大4%のエネルギーを節約でき、従来のルールベースシステムに比べて最大23.54%のエネルギーを節約できる。
論文 参考訳(メタデータ) (2023-03-16T21:31:55Z) - Optimal Planning of Hybrid Energy Storage Systems using Curtailed
Renewable Energy through Deep Reinforcement Learning [0.0]
エネルギー貯蔵システム(ESS)を計画するためのポリシーに基づくアルゴリズムを用いた高度な深層強化学習手法を提案する。
定量的性能比較の結果、DRLエージェントはシナリオベース最適化(SO)アルゴリズムよりも優れていた。
その結果、DRLエージェントは人間の専門家が行うように学習し、提案手法の信頼性が示唆された。
論文 参考訳(メタデータ) (2022-12-12T02:24:50Z) - Progress and summary of reinforcement learning on energy management of
MPS-EV [4.0629930354376755]
エネルギー管理戦略(エネルギ・マネジメント・ストラテジー、EMS)は、MPS-EVが効率、燃費、走行距離を最大化するための重要な技術である。
本稿では,RL ベース EMS に関する現在の研究の詳細な分析を行い,RL ベース EMS の設計要素を要約する。
論文 参考訳(メタデータ) (2022-11-08T04:49:32Z) - Unified Automatic Control of Vehicular Systems with Reinforcement
Learning [64.63619662693068]
本稿では,車載マイクロシミュレーションの合理化手法について述べる。
最小限の手動設計で高性能な制御戦略を発見する。
この研究は、波動緩和、交通信号、ランプ計測に類似した多くの創発的挙動を明らかにしている。
論文 参考訳(メタデータ) (2022-07-30T16:23:45Z) - Improving Robustness of Reinforcement Learning for Power System Control
with Adversarial Training [71.7750435554693]
電力系統制御のために提案された最先端のRLエージェントが敵攻撃に対して脆弱であることを示す。
具体的には、敵のマルコフ決定プロセスを用いて攻撃方針を学習し、攻撃の有効性を実証する。
本稿では,RLエージェントの攻撃に対する堅牢性を高め,実行不可能な運用上の決定を回避するために,敵の訓練を利用することを提案する。
論文 参考訳(メタデータ) (2021-10-18T00:50:34Z) - Deep Reinforcement Learning Based Multidimensional Resource Management
for Energy Harvesting Cognitive NOMA Communications [64.1076645382049]
エネルギー収穫(EH)、認知無線(CR)、非直交多重アクセス(NOMA)の組み合わせはエネルギー効率を向上させるための有望な解決策である。
本稿では,決定論的CR-NOMA IoTシステムにおけるスペクトル,エネルギー,時間資源管理について検討する。
論文 参考訳(メタデータ) (2021-09-17T08:55:48Z) - Risk-Aware Energy Scheduling for Edge Computing with Microgrid: A
Multi-Agent Deep Reinforcement Learning Approach [82.6692222294594]
マイクログリッドを用いたMECネットワークにおけるリスク対応エネルギースケジューリング問題について検討する。
ニューラルネットワークを用いたマルチエージェントディープ強化学習(MADRL)に基づくアドバンテージアクター・クリティック(A3C)アルゴリズムを適用し,その解を導出する。
論文 参考訳(メタデータ) (2020-02-21T02:14:38Z) - Multi-Agent Meta-Reinforcement Learning for Self-Powered and Sustainable
Edge Computing Systems [87.4519172058185]
エッジコンピューティング機能を有するセルフパワー無線ネットワークの効率的なエネルギー分配機構について検討した。
定式化問題を解くために,新しいマルチエージェントメタ強化学習(MAMRL)フレームワークを提案する。
実験の結果、提案されたMAMRLモデルは、再生不可能なエネルギー使用量を最大11%削減し、エネルギーコストを22.4%削減できることが示された。
論文 参考訳(メタデータ) (2020-02-20T04:58:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。