Measuring the Driving Forces of Predictive Performance: Application to
Credit Scoring
- URL: http://arxiv.org/abs/2212.05866v3
- Date: Tue, 27 Jun 2023 12:57:25 GMT
- Title: Measuring the Driving Forces of Predictive Performance: Application to
Credit Scoring
- Authors: Hu\'e Sullivan, Hurlin Christophe, P\'erignon Christophe and Saurin
S\'ebastien
- Abstract summary: In credit scoring, machine learning models are known to outperform standard parametric models.
We introduce the XPER methodology to decompose a performance metric into contributions associated with a model.
We show that a small number of features can explain a surprisingly large part of the model performance.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In credit scoring, machine learning models are known to outperform standard
parametric models. As they condition access to credit, banking supervisors and
internal model validation teams need to monitor their predictive performance
and to identify the features with the highest impact on performance. To
facilitate this, we introduce the XPER methodology to decompose a performance
metric (e.g., AUC, $R^2$) into specific contributions associated with the
various features of a classification or regression model. XPER is theoretically
grounded on Shapley values and is both model-agnostic and performance
metric-agnostic. Furthermore, it can be implemented either at the model level
or at the individual level. Using a novel dataset of car loans, we decompose
the AUC of a machine-learning model trained to forecast the default probability
of loan applicants. We show that a small number of features can explain a
surprisingly large part of the model performance. Furthermore, we find that the
features that contribute the most to the predictive performance of the model
may not be the ones that contribute the most to individual forecasts (SHAP). We
also show how XPER can be used to deal with heterogeneity issues and
significantly boost out-of-sample performance.
Related papers
- Explanatory Model Monitoring to Understand the Effects of Feature Shifts on Performance [61.06245197347139]
We propose a novel approach to explain the behavior of a black-box model under feature shifts.
We refer to our method that combines concepts from Optimal Transport and Shapley Values as Explanatory Performance Estimation.
arXiv Detail & Related papers (2024-08-24T18:28:19Z) - Observational Scaling Laws and the Predictability of Language Model Performance [51.2336010244645]
We propose an observational approach that bypasses model training and instead builds scaling laws from 100 publically available models.
We show that several emergent phenomena follow a smooth, sigmoidal behavior and are predictable from small models.
We show how to predict the impact of post-training interventions like Chain-of-Thought and Self-Consistency as language model capabilities continue to improve.
arXiv Detail & Related papers (2024-05-17T17:49:44Z) - Decomposing and Editing Predictions by Modeling Model Computation [75.37535202884463]
We introduce a task called component modeling.
The goal of component modeling is to decompose an ML model's prediction in terms of its components.
We present COAR, a scalable algorithm for estimating component attributions.
arXiv Detail & Related papers (2024-04-17T16:28:08Z) - On the Foundations of Shortcut Learning [20.53986437152018]
We study how predictivity and availability interact to shape models' feature use.
We find that linear models are relatively unbiased, but introducing a single hidden layer with ReLU or Tanh units yields a bias.
arXiv Detail & Related papers (2023-10-24T22:54:05Z) - Cross Feature Selection to Eliminate Spurious Interactions and Single
Feature Dominance Explainable Boosting Machines [0.0]
Interpretability is essential for legal, ethical, and practical reasons.
High-performance models can suffer from spurious interactions with redundant features and single-feature dominance.
In this paper, we explore novel approaches to address these issues by utilizing alternate Cross-feature selection, ensemble features and model configuration alteration techniques.
arXiv Detail & Related papers (2023-07-17T13:47:41Z) - Predicting is not Understanding: Recognizing and Addressing
Underspecification in Machine Learning [47.651130958272155]
Underspecification refers to the existence of multiple models that are indistinguishable in their in-domain accuracy.
We formalize the concept of underspecification and propose a method to identify and partially address it.
arXiv Detail & Related papers (2022-07-06T11:20:40Z) - Feeding What You Need by Understanding What You Learned [54.400455868448695]
Machine Reading (MRC) reveals the ability to understand a given text passage and answer questions based on it.
Existing research works in MRC rely heavily on large-size models and corpus to improve the performance evaluated by metrics such as Exact Match.
We argue that a deep understanding of model capabilities and data properties can help us feed a model with appropriate training data.
arXiv Detail & Related papers (2022-03-05T14:15:59Z) - Post-hoc Models for Performance Estimation of Machine Learning Inference [22.977047604404884]
Estimating how well a machine learning model performs during inference is critical in a variety of scenarios.
We systematically generalize performance estimation to a diverse set of metrics and scenarios.
We find that proposed post-hoc models consistently outperform the standard confidence baselines.
arXiv Detail & Related papers (2021-10-06T02:20:37Z) - Models, Pixels, and Rewards: Evaluating Design Trade-offs in Visual
Model-Based Reinforcement Learning [109.74041512359476]
We study a number of design decisions for the predictive model in visual MBRL algorithms.
We find that a range of design decisions that are often considered crucial, such as the use of latent spaces, have little effect on task performance.
We show how this phenomenon is related to exploration and how some of the lower-scoring models on standard benchmarks will perform the same as the best-performing models when trained on the same training data.
arXiv Detail & Related papers (2020-12-08T18:03:21Z) - Model Embedding Model-Based Reinforcement Learning [4.566180616886624]
Model-based reinforcement learning (MBRL) has shown its advantages in sample-efficiency over model-free reinforcement learning (MFRL)
Despite the impressive results it achieves, it still faces a trade-off between the ease of data generation and model bias.
We propose a simple and elegant model-embedding model-based reinforcement learning (MEMB) algorithm in the framework of the probabilistic reinforcement learning.
arXiv Detail & Related papers (2020-06-16T15:10:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.