Fast, broad-band magnetic resonance spectroscopy with diamond widefield
relaxometry
- URL: http://arxiv.org/abs/2212.06087v2
- Date: Tue, 13 Dec 2022 13:28:39 GMT
- Title: Fast, broad-band magnetic resonance spectroscopy with diamond widefield
relaxometry
- Authors: C. Mignon, A. R. Ortiz Moreno, H. Shirzad, S. K. Padamati, V. Damle,
Y. Ong, R. Schirhagl, M. Chipaux
- Abstract summary: We present an alternative to conventional Electron Paramagnetic Resonance spectroscopy equipment.
We use the photoluminescence of an ensemble of Nitrogen-Vacancy centers at the surface of a diamond.
Monitoring their relaxation time (or T1), we detected their cross-relaxation with the compound of interest.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present an alternative to conventional Electron Paramagnetic Resonance
spectroscopy equipment. Avoiding the use of bulky magnets and magnetron
equipment, we use the photoluminescence of an ensemble of Nitrogen-Vacancy
centers at the surface of a diamond. Monitoring their relaxation time (or T1),
we detected their cross-relaxation with the compound of interest. In addition,
the EPR spectra is encoded through a localized magnetic field gradient. While
12 minutes was necessary to record each data point of the spectrum with
previous individual NV center's technics, we are able to reconstruct a full
spectrum at once in 3 seconds, over a range from 3 to 11 gauss. In term of
sensitivity, only 0.5 microliter of a hexaaquacopper (II) ion solution with 1
micromole per liter concentration was necessary.
Related papers
- Time-resolved diamond magnetic microscopy of superparamagnetic iron-oxide nanoparticles [0.0]
Superparamagnetic iron-oxide nanoparticles (SPIONs) are promising probes for biomedical imaging.
Here, we perform widefield imaging of the stray magnetic fields produced by hundreds of isolated 30-nm SPIONs.
arXiv Detail & Related papers (2024-11-20T07:28:42Z) - Squeezed dual-comb spectroscopy [32.73124984242397]
Squeezing the distribution of quantum noise to enhance measurement precision of either the amplitude or phase quadrature of an optical field leads to significant measurement improvements with continuous wave lasers.
Interferometry with a second coherent state frequency comb yields mode-resolved spectroscopy of hydrogen sulfide gas with a signal-to-noise ratio nearly 3 dB beyond the shot noise limit.
The quantum noise reduction leads to a two-fold quantum speedup in the determination of gas concentration, with impact for fast, broadband, and high SNR ratio measurements of multiple species in dynamic chemical environments.
arXiv Detail & Related papers (2024-08-29T16:36:23Z) - Vector Magnetometry Using Shallow Implanted NV Centers in Diamond with Waveguide-Assisted Dipole Excitation and Readout [34.114534806002595]
Nitrogen-Vacancy (NV) centers in diamond require scalable integration of 3D waveguides into diamond substrates.
We develop a sensing array device with an ensemble of shallow implanted NV centers integrated with arrays of laser-written waveguides for excitation and readout of NV signals.
arXiv Detail & Related papers (2024-07-26T12:55:25Z) - Mid-infrared spectroscopy with a broadly tunable thin-film lithium
niobate optical parametric oscillator [45.82374977939355]
Device generates 25 mW of mid-infrared light at 3.2 microns, offering a power conversion efficiency of 15%.
We demonstrate the tuning and performance of the device by successfully measuring the spectra of methane and ammonia.
arXiv Detail & Related papers (2023-07-09T15:08:35Z) - Zero field magnetic resonance spectroscopy based on Nitrogen-vacancy
centers [0.0]
We propose a scheme to have zero field magnetic resonance spectroscopy based on a nitrogen-vacancy center.
Our work extends applications of NV centers as a nanoscale molecule spectroscopy in the zero field regime.
arXiv Detail & Related papers (2023-04-05T01:08:54Z) - Single electron-spin-resonance detection by microwave photon counting [1.3281177137699656]
Single-electron-spin sensitivity has been reached using spin-dependent photoluminescence, transport measurements, and scanning-probe techniques.
Here, we demonstrate single electron magnetic resonance by spin fluorescence detection, using a microwave photon counter at cryogenic temperatures.
arXiv Detail & Related papers (2023-01-06T18:57:58Z) - Multi-Center Magnon Excitations Open the Entire Brillouin Zone to
Terahertz Magnetometry of Quantum Magnets [42.72559625804617]
The magnon density of states can be accessed over the entire Brillouin zone through three-center magnon excitations.
The results of THz time-domain experiments agree remarkably well with linear spin-wave theory.
arXiv Detail & Related papers (2022-03-08T19:04:24Z) - Spectral multiplexing of telecom emitters with stable transition
frequency [68.8204255655161]
coherent emitters can be entangled over large distances using photonic channels.
We observe around 100 individual erbium emitters using a Fabry-Perot resonator with an embedded 19 micrometer thin crystalline membrane.
Our results constitute an important step towards frequency-multiplexed quantum-network nodes operating directly at a telecommunication wavelength.
arXiv Detail & Related papers (2021-10-18T15:39:07Z) - Two-Dimensional Single- and Multiple-Quantum Correlation Spectroscopy in
Zero-Field Nuclear Magnetic Resonance [55.41644538483948]
We present single- and multiple-quantum correlation $J$-spectroscopy detected in zero magnetic field using a Rb vapor-cell magnetometer.
At zero field the spectrum of ethanol appears as a mixture of carbon isotopomers, and correlation spectroscopy is useful in separating the two composite spectra.
arXiv Detail & Related papers (2020-04-09T10:02:45Z) - Nanoscale zero-field electron spin resonance spectroscopy [8.243565925797414]
We present a method for deploying ZF-ESR spectroscopy at the nanoscale by using a highly sensitive quantum sensor, the nitrogen-vacancy center in diamond.
We also measure the nanoscale ZF-ESR spectrum of a few P1 centers in diamond, and show that the hyperfine coupling constant can be directly extracted from the spectrum.
arXiv Detail & Related papers (2020-02-19T03:08:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.