論文の概要: Deep Learning Ensemble for Predicting Diabetic Macular Edema Onset Using Ultra-Wide Field Color Fundus Image
- arxiv url: http://arxiv.org/abs/2410.06483v1
- Date: Wed, 9 Oct 2024 02:16:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-01 05:29:07.046352
- Title: Deep Learning Ensemble for Predicting Diabetic Macular Edema Onset Using Ultra-Wide Field Color Fundus Image
- Title(参考訳): 超広視野カラー画像を用いた糖尿病黄斑浮腫発症予測のための深層学習アンサンブル
- Authors: Pengyao Qin, Arun J. Thirunavukarasu, Le Zhang,
- Abstract要約: 糖尿病黄斑浮腫(英: Diabetic macular edema, DME)は、糖尿病の重篤な合併症である。
超広視野カラー写真画像を用いて1年以内にci-DMEの発症を予測するアンサンブル手法を提案する。
- 参考スコア(独自算出の注目度): 3.271278111396875
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diabetic macular edema (DME) is a severe complication of diabetes, characterized by thickening of the central portion of the retina due to accumulation of fluid. DME is a significant and common cause of visual impairment in diabetic patients. Center-involved DME (ci-DME) is the highest risk form of disease as fluid extends close to the fovea which is responsible for sharp central vision. Earlier diagnosis or prediction of ci-DME may improve treatment outcomes. Here, we propose an ensemble method to predict ci-DME onset within a year using ultra-wide-field color fundus photography (UWF-CFP) images provided by the DIAMOND Challenge. We adopted a variety of baseline state-of-the-art classification networks including ResNet, DenseNet, EfficientNet, and VGG with the aim of enhancing model robustness. The best performing models were Densenet 121, Resnet 152 and EfficientNet b7, and these were assembled into a definitive predictive model. The final ensemble model demonstrates a strong performance with an Area Under Curve (AUC) of 0.7017, an F1 score of 0.6512, and an Expected Calibration Error (ECE) of 0.2057 when deployed on a synthetic dataset. The performance of this ensemble model is comparable to previous studies despite training and testing in a more realistic setting, indicating the potential of UWF-CFP combined with a deep learning classification system to facilitate earlier diagnosis, better treatment decisions, and improved prognostication in ci-DME.
- Abstract(参考訳): 糖尿病黄斑浮腫(英: Diabetic macular edema, DME)は、糖尿病の重篤な合併症である。
DMEは糖尿病患者の視覚障害の重要かつ一般的な原因である。
中心結合型DME(ci-DME)は、鋭い中心視を司る胎児の近傍に流体が広がるため、疾患の最も危険な形態である。
ci-DMEの早期診断や予測は治療成績を改善する可能性がある。
そこで本研究では,DIAMOND Challengeで提供されるUWF-CFP画像を用いて,1年以内にci-DMEのオンセットを予測するアンサンブル手法を提案する。
我々はResNet、DenseNet、EfficientNet、VGGなど、さまざまなベースラインの最先端分類ネットワークをモデルロバスト性の向上のために採用した。
最高のパフォーマンスモデルはDensenet 121、Resnet 152、EfficientNet b7で、これらは決定的な予測モデルに組み立てられた。
最終的なアンサンブルモデルでは、AUCが0.7017、F1が0.6512、ECEが0.2057である。
このアンサンブルモデルの性能は、より現実的な環境でのトレーニングやテストにもかかわらず、以前の研究に匹敵するものであり、UWF-CFPとディープラーニング分類システムを組み合わせることにより、早期診断の容易化、治療決定の改善、ci-DMEにおける予後の向上が示される。
関連論文リスト
- Deep Learning-Based Detection of Referable Diabetic Retinopathy and Macular Edema Using Ultra-Widefield Fundus Imaging [0.6727410055112188]
糖尿病網膜症や糖尿病黄斑浮腫は、視力喪失につながる糖尿病の重大な合併症である。
超広視野眼底画像による早期発見は、患者の成果を高めるが、画質と分析スケールの課題を提示する。
本稿では,MICCAI 2024 UWF4DRチャレンジの枠組みの中で,自動UWF画像解析のためのディープラーニングソリューションを提案する。
論文 参考訳(メタデータ) (2024-09-19T15:51:48Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
LVM-Medは、大規模医療データセットに基づいてトレーニングされた、最初のディープネットワークファミリーである。
55の公開データセットから約13万の医療画像を収集しました。
LVM-Medは、多くの最先端の教師付き、自己監督型、基礎モデルよりも経験的に優れている。
論文 参考訳(メタデータ) (2023-06-20T22:21:34Z) - Retinal Image Segmentation with Small Datasets [25.095695898777656]
糖尿病黄斑浮腫(DME)、加齢関連黄斑変性(AMD)、緑内障などの多くの眼疾患が網膜に出現し、不可逆的な失明や中心バージョンに深刻な障害を引き起こす。
オプティカルコヒーレンス・トモグラフィ(OCT)は網膜の3Dスキャンであり、網膜解剖の変化を診断し、モニターするために用いられる。
多くのDeep Learning(DL)メソッドは、網膜の病理学的変化を監視する自動化ツールの開発の成功を共有している。
論文 参考訳(メタデータ) (2023-03-09T08:32:14Z) - Machine Learning based prediction of Glucose Levels in Type 1 Diabetes
Patients with the use of Continuous Glucose Monitoring Data [0.0]
連続グルコースモニタリング(Continuous Glucose Monitoring, CGM)デバイスは、患者の血糖値に関する詳細な、非侵襲的でリアルタイムな洞察を提供する。
将来のグルコースレベルの予測方法としての高度な機械学習(ML)モデルを活用することで、生活改善の実質的な品質がもたらされる。
論文 参考訳(メタデータ) (2023-02-24T19:10:40Z) - An Ensemble Method to Automatically Grade Diabetic Retinopathy with
Optical Coherence Tomography Angiography Images [4.640835690336653]
糖尿病網膜症解析チャレンジ(DRAC)2022から得られる糖尿病網膜症(DR)画像を自動的に評価するアンサンブル法を提案する。
まず、最先端の分類ネットワークを採用し、利用可能なデータセットの異なる分割でUW-OCTA画像のグレードをトレーニングする。
最終的に、25のモデルを取得し、そのうち上位16のモデルを選択し、アンサンブルして最終的な予測を生成する。
論文 参考訳(メタデータ) (2022-12-12T22:06:47Z) - Density-Aware Personalized Training for Risk Prediction in Imbalanced
Medical Data [89.79617468457393]
不均衡率(クラス密度差)のトレーニングモデルは、最適以下の予測につながる可能性がある。
この不均衡問題に対するモデルトレーニングのためのフレームワークを提案する。
実世界の医療データセットにおけるモデルの性能向上を実証する。
論文 参考訳(メタデータ) (2022-07-23T00:39:53Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
このフレームワークには、飲み込みレベルにおけるディープラーニングモデルと、学習レベルにおける機能ベースの機械学習モデルが含まれている。
これは、生のマルチスワローデータからHRM研究のCC診断を自動的に予測する最初の人工知能モデルである。
論文 参考訳(メタデータ) (2021-06-25T20:09:23Z) - On the Robustness of Pretraining and Self-Supervision for a Deep
Learning-based Analysis of Diabetic Retinopathy [70.71457102672545]
糖尿病網膜症における訓練方法の違いによる影響を比較検討した。
本稿では,定量的性能,学習した特徴表現の統計,解釈可能性,画像歪みに対する頑健性など,さまざまな側面について検討する。
以上の結果から,ImageNet事前学習モデルでは,画像歪みに対する性能,一般化,堅牢性が著しく向上していることが示唆された。
論文 参考訳(メタデータ) (2021-06-25T08:32:45Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - Robust Deep AUC Maximization: A New Surrogate Loss and Empirical Studies
on Medical Image Classification [63.44396343014749]
AUCスコアに対する新たなマージンベースサロゲート損失関数を提案する。
一般的に使用されるものよりも頑丈である。
大規模な最適化の観点からも同じ利点を享受しながら、正方損失。
私たちの知る限りでは、DAMが大規模医療画像データセットで成功するのはこれが初めてです。
論文 参考訳(メタデータ) (2020-12-06T03:41:51Z) - Blended Multi-Modal Deep ConvNet Features for Diabetic Retinopathy
Severity Prediction [0.0]
糖尿病網膜症(DR)は、世界中の視覚障害と視覚障害の主要な原因の1つである。
複数の事前学習したConvNetモデルから抽出した特徴をブレンドした網膜画像の最適表現を導出する。
DR識別は97.41%、カッパ統計は94.82、カッパ統計は81.7%、カッパ統計は71.1%である。
論文 参考訳(メタデータ) (2020-05-30T06:46:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。