論文の概要: Generative artificial intelligence-enabled dynamic detection of
nicotine-related circuits
- arxiv url: http://arxiv.org/abs/2212.06330v1
- Date: Tue, 13 Dec 2022 02:21:22 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-14 14:27:44.091857
- Title: Generative artificial intelligence-enabled dynamic detection of
nicotine-related circuits
- Title(参考訳): 人工知能によるニコチン関連回路の動的検出
- Authors: Changwei Gong, Changhong Jing, Ye Li, Xinan Liu, Zuxin Chen, Shuqiang
Wang
- Abstract要約: 中毒関連回路の同定は、中毒プロセスの説明と中毒治療の開発に重要である。
我々はこれらの課題に対処するために,データ駆動型でエンドツーエンドな生成人工知能フレームワークを開発した。
- 参考スコア(独自算出の注目度): 5.468686783269564
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The identification of addiction-related circuits is critical for explaining
addiction processes and developing addiction treatments. And models of
functional addiction circuits developed from functional imaging are an
effective tool for discovering and verifying addiction circuits. However,
analyzing functional imaging data of addiction and detecting functional
addiction circuits still have challenges. We have developed a data-driven and
end-to-end generative artificial intelligence(AI) framework to address these
difficulties. The framework integrates dynamic brain network modeling and novel
network architecture networks architecture, including temporal graph
Transformer and contrastive learning modules. A complete workflow is formed by
our generative AI framework: the functional imaging data, from neurobiological
experiments, and computational modeling, to end-to-end neural networks, is
transformed into dynamic nicotine addiction-related circuits. It enables the
detection of addiction-related brain circuits with dynamic properties and
reveals the underlying mechanisms of addiction.
- Abstract(参考訳): 依存症関連回路の同定は、依存症過程の説明と依存症治療に不可欠である。
また、機能的イメージングから開発された機能的依存回路のモデルは、依存的回路の発見と検証に有効なツールである。
しかし、依存症の画像解析と機能的依存回路の検出は依然として課題である。
我々はこれらの課題に対処するため,データ駆動型・エンドツーエンド生成人工知能(AI)フレームワークを開発した。
このフレームワークは動的脳ネットワークモデリングと、時間グラフトランスフォーマーやコントラスト学習モジュールを含む新しいネットワークアーキテクチャネットワークアーキテクチャを統合する。
神経生物学の実験や計算モデリングからエンドツーエンドのニューラルネットワークへの機能的イメージングデータは、動的なニコチン依存関連回路に変換されます。
中毒関連脳回路をダイナミックな特性で検出し、依存の基盤となるメカニズムを明らかにする。
関連論文リスト
- Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
本研究では,まず動的因果モデルを用いて脳効果ネットワークを構築する。
次に、STE-ODE(Spatio-Temporal Embedding ODE)と呼ばれる解釈可能なグラフ学習フレームワークを導入する。
このフレームワークは、構造的および効果的なネットワーク間の動的相互作用を捉えることを目的とした、特異的に設計されたノード埋め込み層を含んでいる。
論文 参考訳(メタデータ) (2024-05-21T20:37:07Z) - DSAM: A Deep Learning Framework for Analyzing Temporal and Spatial Dynamics in Brain Networks [4.041732967881764]
ほとんどのrs-fMRI研究は、関心のある脳領域にまたがる単一の静的機能接続行列を計算している。
これらのアプローチは、脳のダイナミクスを単純化し、目の前のゴールを適切に考慮していないリスクがある。
本稿では,時系列から直接ゴール固有の機能的接続行列を学習する,解釈可能な新しいディープラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-19T23:35:06Z) - Automatic Discovery of Visual Circuits [66.99553804855931]
本稿では,視覚モデルにおける視覚的概念の認識の基盤となる計算グラフのサブグラフを抽出するスケーラブルな手法について検討する。
提案手法は, モデル出力に因果的に影響を及ぼす回路を抽出し, これらの回路を編集することで, 敵攻撃から大きな事前学習モデルを守ることができることがわかった。
論文 参考訳(メタデータ) (2024-04-22T17:00:57Z) - Neuromorphic analog circuits for robust on-chip always-on learning in
spiking neural networks [1.9809266426888898]
混合信号ニューロモルフィックシステムは、極端コンピューティングタスクを解決するための有望なソリューションである。
彼らのスパイクニューラルネットワーク回路は、連続的にセンサーデータをオンラインに処理するために最適化されている。
我々は,短期的アナログ力学と長期的三状態離散化機構を備えたオンチップ学習回路を設計する。
論文 参考訳(メタデータ) (2023-07-12T11:14:25Z) - Exploiting Large Neuroimaging Datasets to Create Connectome-Constrained
Approaches for more Robust, Efficient, and Adaptable Artificial Intelligence [4.998666322418252]
我々は、脳の地図を含む大きなニューロイメージングデータセットを利用するパイプラインを構想する。
我々は,繰り返しるサブサーキットやモチーフの発見手法を開発した。
第3に、チームはフルーツフライコネクトームのメモリ形成の回路を分析し、新しい生成的リプレイアプローチの設計を可能にした。
論文 参考訳(メタデータ) (2023-05-26T23:04:53Z) - Functional2Structural: Cross-Modality Brain Networks Representation
Learning [55.24969686433101]
脳ネットワーク上のグラフマイニングは、臨床表現型および神経変性疾患のための新しいバイオマーカーの発見を促進する可能性がある。
本稿では,Deep Signed Brain Networks (DSBN) と呼ばれる新しいグラフ学習フレームワークを提案する。
臨床表現型および神経変性疾患予測の枠組みを,2つの独立した公開データセットを用いて検証した。
論文 参考訳(メタデータ) (2022-05-06T03:45:36Z) - Cross-Modality Neuroimage Synthesis: A Survey [71.27193056354741]
マルチモダリティイメージングは、疾患の診断を改善し、解剖学的特性を持つ組織における相違を明らかにする。
完全な整列とペアの多モードニューロイメージングデータの存在は、脳研究においてその効果を証明している。
もう一つの解決策は、教師なしまたは弱教師なしの学習方法を探究し、欠落した神経画像データを合成することである。
論文 参考訳(メタデータ) (2022-02-14T19:29:08Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Ensembling complex network 'perspectives' for mild cognitive impairment
detection with artificial neural networks [5.194561180498554]
本研究では,複合ネットワークとニューラルネットワークのパラダイムを共同利用した軽度の認知障害検出手法を提案する。
特に、この手法は、異なる脳構造「パースペクティブ」を人工ニューラルネットワークでアンサンブルすることに基づいている。
論文 参考訳(メタデータ) (2021-01-26T08:38:11Z) - Spiking Neural Networks Hardware Implementations and Challenges: a
Survey [53.429871539789445]
スパイキングニューラルネットワークは、ニューロンとシナプスの操作原理を模倣する認知アルゴリズムである。
スパイキングニューラルネットワークのハードウェア実装の現状について述べる。
本稿では,これらのイベント駆動アルゴリズムの特性をハードウェアレベルで活用するための戦略について論じる。
論文 参考訳(メタデータ) (2020-05-04T13:24:00Z) - Intrinsic Motivation and Episodic Memories for Robot Exploration of
High-Dimensional Sensory Spaces [0.0]
本研究では,マイクロファーミングロボットの画像センサのための好奇心駆動型目標指向探索行動を生成するアーキテクチャを提案する。
画像から低次元特徴をオフラインで教師なしで学習するためのディープニューラルネットワークと、システムの逆および前方運動学を表す浅層ニューラルネットワークのオンライン学習の組み合わせが用いられている。
人工好奇心システムは、予め定義された目標のセットに関心値を割り当て、学習の進捗を最大化すると予想される目標への探索を促進する。
論文 参考訳(メタデータ) (2020-01-07T11:39:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。