論文の概要: Neuromorphic analog circuits for robust on-chip always-on learning in
spiking neural networks
- arxiv url: http://arxiv.org/abs/2307.06084v1
- Date: Wed, 12 Jul 2023 11:14:25 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-13 13:19:00.009617
- Title: Neuromorphic analog circuits for robust on-chip always-on learning in
spiking neural networks
- Title(参考訳): スパイクニューラルネットワークにおけるロバストオンチップ常時学習のためのニューロモルフィックアナログ回路
- Authors: Arianna Rubino, Matteo Cartiglia, Melika Payvand and Giacomo Indiveri
- Abstract要約: 混合信号ニューロモルフィックシステムは、極端コンピューティングタスクを解決するための有望なソリューションである。
彼らのスパイクニューラルネットワーク回路は、連続的にセンサーデータをオンラインに処理するために最適化されている。
我々は,短期的アナログ力学と長期的三状態離散化機構を備えたオンチップ学習回路を設計する。
- 参考スコア(独自算出の注目度): 1.9809266426888898
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Mixed-signal neuromorphic systems represent a promising solution for solving
extreme-edge computing tasks without relying on external computing resources.
Their spiking neural network circuits are optimized for processing sensory data
on-line in continuous-time. However, their low precision and high variability
can severely limit their performance. To address this issue and improve their
robustness to inhomogeneities and noise in both their internal state variables
and external input signals, we designed on-chip learning circuits with
short-term analog dynamics and long-term tristate discretization mechanisms. An
additional hysteretic stop-learning mechanism is included to improve stability
and automatically disable weight updates when necessary, to enable continuous
always-on learning. We designed a spiking neural network with these learning
circuits in a prototype chip using a 180 nm CMOS technology. Simulation and
silicon measurement results from the prototype chip are presented. These
circuits enable the construction of large-scale spiking neural networks with
online learning capabilities for real-world edge computing tasks.
- Abstract(参考訳): 混合信号ニューロモルフィックシステムは、外部のコンピューティングリソースに頼ることなく、極端にエッジなコンピューティングタスクを解くための有望なソリューションである。
スパイキングニューラルネットワーク回路は、オンラインの感覚データを連続的に処理するために最適化されている。
しかし、その低い精度と高い可変性は性能を著しく制限することができる。
この問題に対処し,その内部状態変数と外部入力信号の両方における不均一性と雑音に対するロバスト性を改善するため,短期アナログダイナミクスと長期三状態弁別機構を備えたオンチップ学習回路を設計した。
安定性を改善し、必要に応じて自動的にウェイト更新を無効にし、常時学習を可能にする、追加のヒステリックストップラーニングメカニズムが含まれている。
我々は180nmCMOS技術を用いて,これらの学習回路を用いたスパイクニューラルネットワークを試作した。
プロトタイプチップのシミュレーションとシリコン測定結果について述べる。
これらの回路は、リアルタイムエッジコンピューティングタスクのためのオンライン学習機能を備えた大規模スパイクニューラルネットワークの構築を可能にする。
関連論文リスト
- Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
スパイクニューラルネットワークは、現代のバックプロパゲーションによって訓練されたディープネットワークに直面する重要な制約の多くを横取りする、ニューロンベースのモデルの重要なファミリーとなっている。
本研究では,前向き・後向き学習のニューロモルフィック形式であるコントラッシブ・シグナル依存型塑性(CSDP)の概念実証を設計し,検討する。
論文 参考訳(メタデータ) (2024-09-17T04:48:45Z) - DYNAP-SE2: a scalable multi-core dynamic neuromorphic asynchronous
spiking neural network processor [2.9175555050594975]
我々は、リアルタイムイベントベーススパイキングニューラルネットワーク(SNN)をプロトタイピングするための、脳にインスパイアされたプラットフォームを提案する。
提案システムは, 短期可塑性, NMDA ゲーティング, AMPA拡散, ホメオスタシス, スパイク周波数適応, コンダクタンス系デンドライトコンパートメント, スパイク伝達遅延などの動的および現実的なニューラル処理現象の直接エミュレーションを支援する。
異なる生物学的に可塑性のニューラルネットワークをエミュレートする柔軟性と、個体群と単一ニューロンの信号の両方をリアルタイムで監視する能力により、基礎研究とエッジコンピューティングの両方への応用のための複雑なニューラルネットワークモデルの開発と検証が可能になる。
論文 参考訳(メタデータ) (2023-10-01T03:48:16Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
スパイキングニューラルネットワーク(SNN)は、エネルギー消費と遅延の観点から、桁違いに改善されている。
我々は、カスタムSNN PythonパッケージsnnTorchのIPU最適化リリースを提示する。
論文 参考訳(メタデータ) (2022-11-19T15:44:08Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
2つの階層構造を持つ180nmプロセス技術において,集団に基づくディジタルスパイキングニューロモルフィックプロセッサを提案する。
提案手法は,生体模倣型ニューロモルフィックシステム,低消費電力,低遅延推論処理アプリケーションの開発を可能にする。
論文 参考訳(メタデータ) (2022-01-19T09:26:34Z) - Neuromorphic Algorithm-hardware Codesign for Temporal Pattern Learning [11.781094547718595]
複雑な空間時間パターンを学習するためにSNNを訓練できるLeaky IntegrateとFireニューロンの効率的なトレーニングアルゴリズムを導出する。
我々は,ニューロンとシナプスのメムリスタに基づくネットワークのためのCMOS回路実装を開発した。
論文 参考訳(メタデータ) (2021-04-21T18:23:31Z) - On-Chip Error-triggered Learning of Multi-layer Memristive Spiking
Neural Networks [1.7958576850695402]
オンライン3次重み更新を用いた局所的,勾配に基づく,エラートリガー付き学習アルゴリズムを提案する。
提案アルゴリズムは,多層SNNを記憶型ニューロモルフィックハードウェアでオンライントレーニングすることを可能にする。
論文 参考訳(メタデータ) (2020-11-21T19:44:19Z) - Ultra-Low-Power FDSOI Neural Circuits for Extreme-Edge Neuromorphic
Intelligence [2.6199663901387997]
インメモリコンピューティング 混合信号ニューロモルフィックアーキテクチャはエッジコンピューティングのセンサ処理への応用に期待できる超低消費電力のソリューションを提供する。
本稿では、FDSOI(Fully-Depleted Silicon on Insulator)統合プロセスの特徴を利用する混合信号アナログ/デジタル回路を提案する。
論文 参考訳(メタデータ) (2020-06-25T09:31:29Z) - Training End-to-End Analog Neural Networks with Equilibrium Propagation [64.0476282000118]
本稿では,勾配降下による終端から終端までのアナログニューラルネットワークの学習法を提案する。
数学的には、アナログニューラルネットワークのクラス(非線形抵抗性ネットワークと呼ばれる)がエネルギーベースモデルであることが示される。
我々の研究は、オンチップ学習をサポートする、超高速でコンパクトで低消費電力のニューラルネットワークの新世代の開発を導くことができる。
論文 参考訳(メタデータ) (2020-06-02T23:38:35Z) - One-step regression and classification with crosspoint resistive memory
arrays [62.997667081978825]
高速で低エネルギーのコンピュータは、エッジでリアルタイム人工知能を実現するために要求されている。
ワンステップ学習は、ボストンの住宅のコスト予測と、MNIST桁認識のための2層ニューラルネットワークのトレーニングによって支援される。
結果は、クロスポイントアレイ内の物理計算、並列計算、アナログ計算のおかげで、1つの計算ステップで得られる。
論文 参考訳(メタデータ) (2020-05-05T08:00:07Z) - Structural plasticity on an accelerated analog neuromorphic hardware
system [0.46180371154032884]
我々は, プレ・グポストシナプスのパートナーを常に切り替えることにより, 構造的可塑性を達成するための戦略を提案する。
我々はこのアルゴリズムをアナログニューロモルフィックシステムBrainScaleS-2に実装した。
ネットワークトポロジを最適化する能力を示し、簡単な教師付き学習シナリオで実装を評価した。
論文 参考訳(メタデータ) (2019-12-27T10:15:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。