Hybrid discrete-continuous compilation of trapped-ion quantum circuits with deep reinforcement learning
- URL: http://arxiv.org/abs/2307.05744v2
- Date: Fri, 3 May 2024 15:33:07 GMT
- Title: Hybrid discrete-continuous compilation of trapped-ion quantum circuits with deep reinforcement learning
- Authors: Francesco Preti, Michael Schilling, Sofiene Jerbi, Lea M. Trenkwalder, Hendrik Poulsen Nautrup, Felix Motzoi, Hans J. Briegel,
- Abstract summary: We show that we can significantly reduce the size of relevant quantum circuits for trapped-ion computing.
Our framework can also be applied to an experimental setup whose goal is to reproduce an unknown unitary process.
- Score: 1.7087507417780985
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Shortening quantum circuits is crucial to reducing the destructive effect of environmental decoherence and enabling useful algorithms. Here, we demonstrate an improvement in such compilation tasks via a combination of using hybrid discrete-continuous optimization across a continuous gate set, and architecture-tailored implementation. The continuous parameters are discovered with a gradient-based optimization algorithm, while in tandem the optimal gate orderings are learned via a deep reinforcement learning algorithm, based on projective simulation. To test this approach, we introduce a framework to simulate collective gates in trapped-ion systems efficiently on a classical device. The algorithm proves able to significantly reduce the size of relevant quantum circuits for trapped-ion computing. Furthermore, we show that our framework can also be applied to an experimental setup whose goal is to reproduce an unknown unitary process.
Related papers
- Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Surrogate optimization of variational quantum circuits [1.0546736060336612]
Variational quantum eigensolvers are touted as a near-term algorithm capable of impacting many applications.
Finding algorithms and methods to improve convergence is important to accelerate the capabilities of near-term hardware for VQE.
arXiv Detail & Related papers (2024-04-03T18:00:00Z) - Compressed sensing enhanced by quantum approximate optimization algorithm [0.0]
We present a framework to deal with a range of large scale compressive sensing problems using a quantum subroutine.
Our results explore a promising path of applying quantum computers in the compressive sensing field.
arXiv Detail & Related papers (2024-03-26T05:26:51Z) - Curriculum reinforcement learning for quantum architecture search under
hardware errors [1.583327010995414]
This work introduces a curriculum-based reinforcement learning QAS (CRLQAS) designed to tackle challenges in VQA deployment.
The algorithm incorporates (i) a 3D architecture encoding and restrictions on environment dynamics to explore the search space of possible circuits efficiently.
To facilitate studies, we developed an optimized simulator for our algorithm, significantly improving computational efficiency in noisy quantum circuits.
arXiv Detail & Related papers (2024-02-05T20:33:00Z) - Adaptive Circuit Learning of Born Machine: Towards Realization of
Amplitude Embedding and Data Loading [7.88657961743755]
We present a novel algorithm "Adaptive Circuit Learning of Born Machine" (ACLBM)
Our algorithm is tailored to selectively integrate two-qubit entangled gates that best capture the complex entanglement present within the target state.
Empirical results underscore the proficiency of our approach in encoding real-world data through amplitude embedding.
arXiv Detail & Related papers (2023-11-29T16:47:31Z) - Riemannian quantum circuit optimization for Hamiltonian simulation [2.1227079314039057]
Hamiltonian simulation is a natural application of quantum computing.
For translation invariant systems, the gates in such circuit topologies can be further optimized on classical computers.
For the Ising and Heisenberg models on a one-dimensional lattice, we achieve orders of magnitude accuracy improvements.
arXiv Detail & Related papers (2022-12-15T00:00:17Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Tree ensemble kernels for Bayesian optimization with known constraints
over mixed-feature spaces [54.58348769621782]
Tree ensembles can be well-suited for black-box optimization tasks such as algorithm tuning and neural architecture search.
Two well-known challenges in using tree ensembles for black-box optimization are (i) effectively quantifying model uncertainty for exploration and (ii) optimizing over the piece-wise constant acquisition function.
Our framework performs as well as state-of-the-art methods for unconstrained black-box optimization over continuous/discrete features and outperforms competing methods for problems combining mixed-variable feature spaces and known input constraints.
arXiv Detail & Related papers (2022-07-02T16:59:37Z) - Simulation Paths for Quantum Circuit Simulation with Decision Diagrams [72.03286471602073]
We study the importance of the path that is chosen when simulating quantum circuits using decision diagrams.
We propose an open-source framework that allows to investigate dedicated simulation paths.
arXiv Detail & Related papers (2022-03-01T19:00:11Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.