論文の概要: Emergent communication enhances foraging behaviour in evolved swarms
controlled by Spiking Neural Networks
- arxiv url: http://arxiv.org/abs/2212.08484v2
- Date: Fri, 8 Sep 2023 14:56:33 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-11 18:37:04.380518
- Title: Emergent communication enhances foraging behaviour in evolved swarms
controlled by Spiking Neural Networks
- Title(参考訳): 創発的コミュニケーションはスパイキングニューラルネットワークによって制御された進化した群れの捕食行動を促進する
- Authors: Cristian Jimenez Romero, Alper Yegenoglu, Aar\'on P\'erez Mart\'in,
Sandra Diaz-Pier, Abigail Morrison
- Abstract要約: アリのような社会昆虫はフェロモンを介して通信し、活動の協調と複雑なタスクを群れとして解決する。
進化的アルゴリズムを用いて、スパイキングニューラルネットワーク(SNN)を最適化し、人工脳として機能し、各エージェントの動作を制御する。
フェロモンによるコミュニケーションは,フェロモンによるコミュニケーションが出現しないコロニーに比べて,アリの行動が良好であることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Social insects such as ants communicate via pheromones which allows them to
coordinate their activity and solve complex tasks as a swarm, e.g. foraging for
food. This behavior was shaped through evolutionary processes. In computational
models, self-coordination in swarms has been implemented using probabilistic or
simple action rules to shape the decision of each agent and the collective
behavior. However, manual tuned decision rules may limit the behavior of the
swarm. In this work we investigate the emergence of self-coordination and
communication in evolved swarms without defining any explicit rule. We evolve a
swarm of agents representing an ant colony. We use an evolutionary algorithm to
optimize a spiking neural network (SNN) which serves as an artificial brain to
control the behavior of each agent. The goal of the evolved colony is to find
optimal ways to forage for food and return it to the nest in the shortest
amount of time. In the evolutionary phase, the ants are able to learn to
collaborate by depositing pheromone near food piles and near the nest to guide
other ants. The pheromone usage is not manually encoded into the network;
instead, this behavior is established through the optimization procedure. We
observe that pheromone-based communication enables the ants to perform better
in comparison to colonies where communication via pheromone did not emerge. We
assess the foraging performance by comparing the SNN based model to a rule
based system. Our results show that the SNN based model can efficiently
complete the foraging task in a short amount of time. Our approach illustrates
self coordination via pheromone emerges as a result of the network
optimization. This work serves as a proof of concept for the possibility of
creating complex applications utilizing SNNs as underlying architectures for
multi-agent interactions where communication and self-coordination is desired.
- Abstract(参考訳): アリなどの社会昆虫はフェロモンを介して通信し、その活動の調整や、食料の採餌など複雑なタスクの解決を可能にする。
この行動は進化過程によって形作られた。
計算モデルでは、群における自己調整は確率的あるいは単純な行動規則を用いて実装され、それぞれのエージェントの決定と集団行動を形成する。
しかし、手動調整決定規則は、Swarmの動作を制限する可能性がある。
本研究では,進化した群れにおける自己調整とコミュニケーションの出現を明示的な規則を定めずに検討する。
我々はアリコロニーを表すエージェント群を進化させた。
進化的アルゴリズムを用いてスパイキングニューラルネットワーク(snn)を最適化し,各エージェントの行動を制御するための人工脳として機能する。
進化したコロニーの目標は、食物を捕食し、最も短い時間で巣に戻す最適な方法を見つけることである。
進化の段階では、アリは他のアリを誘導するために食物の山や巣の近くにフェロモンを堆積させることで協力を学べる。
フェロモンの使用法を手動でネットワークにエンコードするのではなく、最適化手順によってこの動作が確立される。
フェロモンによるコミュニケーションは,フェロモンによるコミュニケーションが出現しないコロニーに比べて,アリの行動が良好であることを示す。
我々は,SNNモデルとルールベースシステムを比較し,採餌性能を評価する。
以上の結果から,SNNモデルにより短時間で捕食作業が効率的に完了できることが示唆された。
本手法は,ネットワーク最適化の結果,フェロモンによる自己調整が出現することを示す。
この研究は、コミュニケーションと自己調整が望まれるマルチエージェントインタラクションの基盤となるアーキテクチャとしてSNNを利用する複雑なアプリケーションを作成する可能性の実証となる。
関連論文リスト
- Spiking Neural Networks as a Controller for Emergent Swarm Agents [8.816729033097868]
既存の研究では、バイナリセンサーとシンプルだが手書きのコントローラー構造のみを備えたロボット群における創発的行動について検討している。
本稿では,特に創発的行動をもたらす局所的相互作用規則を見つけるために,スパイクニューラルネットワークを訓練する可能性について検討する。
論文 参考訳(メタデータ) (2024-10-21T16:41:35Z) - A Simulation Environment for the Neuroevolution of Ant Colony Dynamics [0.0]
創発的集団行動の研究を促進するためのシミュレーション環境を導入する。
現実世界のデータを活用することで、環境はターゲットのアリの跡をシミュレートし、制御可能なエージェントが複製を学ばなければならない。
論文 参考訳(メタデータ) (2024-06-19T01:51:15Z) - Scaling Large-Language-Model-based Multi-Agent Collaboration [75.5241464256688]
大規模言語モデルによるエージェントのパイオニア化は、マルチエージェントコラボレーションの設計パターンを暗示している。
神経スケーリング法則に触発された本研究では,マルチエージェント協調におけるエージェントの増加に類似の原理が適用されるかを検討する。
論文 参考訳(メタデータ) (2024-06-11T11:02:04Z) - Surprise-Adaptive Intrinsic Motivation for Unsupervised Reinforcement Learning [6.937243101289336]
教師なし強化学習(RL)のエントロピー最小化とエントロピー最大化は異なる環境において有効であることが示されている。
マルチアームバンディット問題としての選択をフレーミングすることで、エントロピー条件に応じて、その目的をオンラインで適応できるエージェントを提案する。
我々は,このようなエージェントがエントロピーを制御し,高エントロピーと低エントロピーの両体制において創発的な行動を示すことを実証した。
論文 参考訳(メタデータ) (2024-05-27T14:58:24Z) - Fully Spiking Actor Network with Intra-layer Connections for
Reinforcement Learning [51.386945803485084]
エージェントが制御する多次元決定論的ポリシーを学習する必要があるタスクに焦点をあてる。
既存のスパイクベースのRL法は、SNNの出力として発火率を取り、完全に接続された層を通して連続的なアクション空間(つまり決定論的なポリシー)を表すように変換する。
浮動小数点行列操作を伴わない完全にスパイクするアクターネットワークを開発するため,昆虫に見られる非スパイク介在ニューロンからインスピレーションを得た。
論文 参考訳(メタデータ) (2024-01-09T07:31:34Z) - DARLEI: Deep Accelerated Reinforcement Learning with Evolutionary
Intelligence [77.78795329701367]
本稿では,進化アルゴリズムと並列化強化学習を組み合わせたフレームワークであるDARLEIを提案する。
我々はDARLEIの性能を様々な条件で特徴付け、進化形態の多様性に影響を与える要因を明らかにした。
今後DARLEIを拡張して、よりリッチな環境における多様な形態素間の相互作用を取り入れていきたいと考えています。
論文 参考訳(メタデータ) (2023-12-08T16:51:10Z) - Leveraging Human Feedback to Evolve and Discover Novel Emergent
Behaviors in Robot Swarms [14.404339094377319]
我々は、人間の入力を活用して、特定のマルチエージェントシステムから現れる可能性のある集団行動の分類を自動で発見することを目指している。
提案手法は,Swarm集団行動に対する類似性空間を学習することにより,ユーザの嗜好に適応する。
我々は,2つのロボット能力モデルを用いたシミュレーションにおいて,本手法が従来よりも豊かな創発的行動の集合を常に発見できることを検証した。
論文 参考訳(メタデータ) (2023-04-25T15:18:06Z) - Task-Agnostic Morphology Evolution [94.97384298872286]
モルフォロジーと振る舞いを共同適用する現在のアプローチでは、特定のタスクの報酬をモルフォロジー最適化のシグナルとして使用します。
これはしばしば高価なポリシー最適化を必要とし、一般化するために構築されていないタスクに依存した形態をもたらす。
我々は,これらの問題を緩和するための新しいアプローチであるタスク非依存形態進化(tame)を提案する。
論文 参考訳(メタデータ) (2021-02-25T18:59:21Z) - Neuroevolution of a Recurrent Neural Network for Spatial and Working
Memory in a Simulated Robotic Environment [57.91534223695695]
我々は,ラットで観察される行動と神経活動を再現する進化的アルゴリズムを用いて,生物学的に有意なリカレントニューラルネットワーク(RNN)でウェイトを進化させた。
提案手法は, 進化したRNNの動的活動が, 興味深く複雑な認知行動をどのように捉えているかを示す。
論文 参考訳(メタデータ) (2021-02-25T02:13:52Z) - Continuous Ant-Based Neural Topology Search [62.200941836913586]
この研究は、アリコロニー最適化に基づく、自然に着想を得たニューラルアーキテクチャサーチ(NAS)アルゴリズムを導入している。
連続アントベースのニューラルトポロジーサーチ(CANTS)は、アリが現実世界でどのように動くかに強く影響を受けている。
論文 参考訳(メタデータ) (2020-11-21T17:49:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。