Disentangling Interacting Systems with Fermionic Gaussian Circuits: Application to Quantum Impurity Models
- URL: http://arxiv.org/abs/2212.09798v2
- Date: Thu, 09 Jan 2025 15:22:21 GMT
- Title: Disentangling Interacting Systems with Fermionic Gaussian Circuits: Application to Quantum Impurity Models
- Authors: Ang-Kun Wu, Benedikt Kloss, Wladislaw Krinitsin, Matthew T. Fishman, J. H. Pixley, E. M. Stoudenmire,
- Abstract summary: We introduce a change of basis with unitary gates obtained from compressing fermionic Gaussian states into quantum circuits corresponding to various tensor networks.
These circuits can reduce the ground state entanglement entropy and improve the performance of algorithms such as the density matrix renormalization group.
- Score: 0.0
- License:
- Abstract: Tensor network quantum states are powerful tools for strongly correlated systems, tailored to capture local correlations such as in ground states with entanglement area laws. When applying tensor network states to interacting fermionic systems, a proper choice of the basis or orbitals can reduce the bond dimension of tensors and provide physically relevant orbitals. We introduce such a change of basis with unitary gates obtained from compressing fermionic Gaussian states into quantum circuits corresponding to various tensor networks. These circuits can reduce the ground state entanglement entropy and improve the performance of algorithms such as the density matrix renormalization group. We study the Anderson impurity model with one and two impurities to show the potential of the method for improving computational efficiency and interpreting impurity physics. Furthermore, fermionic Gaussian circuits can also suppress entanglement during the time evolution out of low-energy state. Last, we consider Gaussian multi-scale entanglement renormalization ansatz (GMERA) circuits which compress fermionic Gaussian states hierarchically. The emergent coarse-grained physical models from these GMERA circuits are studied in terms of their entanglement properties and suitability for performing time evolution.
Related papers
- Neutron-nucleus dynamics simulations for quantum computers [49.369935809497214]
We develop a novel quantum algorithm for neutron-nucleus simulations with general potentials.
It provides acceptable bound-state energies even in the presence of noise, through the noise-resilient training method.
We introduce a new commutativity scheme called distance-grouped commutativity (DGC) and compare its performance with the well-known qubit-commutativity scheme.
arXiv Detail & Related papers (2024-02-22T16:33:48Z) - First-Order Phase Transition of the Schwinger Model with a Quantum Computer [0.0]
We explore the first-order phase transition in the lattice Schwinger model in the presence of a topological $theta$-term.
We show that the electric field density and particle number, observables which reveal the phase structure of the model, can be reliably obtained from the quantum hardware.
arXiv Detail & Related papers (2023-12-20T08:27:49Z) - Resolving nonclassical magnon composition of a magnetic ground state via
a qubit [44.99833362998488]
We show that a direct dispersive coupling between a qubit and a noneigenmode magnon enables detecting the magnonic number states' quantum superposition.
This unique coupling is found to enable control over the equilibrium magnon squeezing and a deterministic generation of squeezed even Fock states.
arXiv Detail & Related papers (2023-06-08T09:30:04Z) - Soliton Confinement in a Quantum Circuit [0.0]
We analyze the confinement of sine-Gordon solitons into mesonic bound states in a one-dimensional quantum electronic circuit(QEC) array.
The interactions occurring naturally in the QEC array, due to tunneling of Cooper-pairs and pairs of Cooper-pairs, give rise to a non-integrable, interacting, lattice model of quantum rotors.
arXiv Detail & Related papers (2023-02-13T11:45:38Z) - Lower Bounding Ground-State Energies of Local Hamiltonians Through the Renormalization Group [0.0]
We show how to formulate a tractable convex relaxation of the set of feasible local density matrices of a quantum system.
The coarse-graining maps of the underlying renormalization procedure serve to eliminate a vast number of those constraints.
This can be used to obtain rigorous lower bounds on the ground state energy of arbitrary local Hamiltonians.
arXiv Detail & Related papers (2022-12-06T14:39:47Z) - Gaussian matrix product states cannot efficiently describe critical
systems [0.913755431537592]
We show, for a simple critical model of free hopping fermions, that any GfMPS approximation to its ground state must have bond dimension scaling superpolynomially with the system size.
We also provide numerical evidence that the required bond dimension is subexponential, and thus can still be simulated with moderate resources.
arXiv Detail & Related papers (2022-04-05T20:26:56Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - Variational Adiabatic Gauge Transformation on real quantum hardware for
effective low-energy Hamiltonians and accurate diagonalization [68.8204255655161]
We introduce the Variational Adiabatic Gauge Transformation (VAGT)
VAGT is a non-perturbative hybrid quantum algorithm that can use nowadays quantum computers to learn the variational parameters of the unitary circuit.
The accuracy of VAGT is tested trough numerical simulations, as well as simulations on Rigetti and IonQ quantum computers.
arXiv Detail & Related papers (2021-11-16T20:50:08Z) - Quantum supremacy regime for compressed fermionic models [0.0]
We identify a class of quadratic fermionic Hamiltonians that can be simulated in compressed space.
In particular, for systems of $n$ orbitals encoded to 2-local qubit models with nearest neighbour interactions, the ground state energy can be evaluated.
We find a regime of quantum supremacy for sampling compressed Gaussian fermionic models.
arXiv Detail & Related papers (2021-10-18T18:02:05Z) - Efficient construction of tensor-network representations of many-body
Gaussian states [59.94347858883343]
We present a procedure to construct tensor-network representations of many-body Gaussian states efficiently and with a controllable error.
These states include the ground and thermal states of bosonic and fermionic quadratic Hamiltonians, which are essential in the study of quantum many-body systems.
arXiv Detail & Related papers (2020-08-12T11:30:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.