Soliton Confinement in a Quantum Circuit
- URL: http://arxiv.org/abs/2302.06289v2
- Date: Tue, 14 Feb 2023 02:53:58 GMT
- Title: Soliton Confinement in a Quantum Circuit
- Authors: Ananda Roy and Sergei L. Lukyanov
- Abstract summary: We analyze the confinement of sine-Gordon solitons into mesonic bound states in a one-dimensional quantum electronic circuit(QEC) array.
The interactions occurring naturally in the QEC array, due to tunneling of Cooper-pairs and pairs of Cooper-pairs, give rise to a non-integrable, interacting, lattice model of quantum rotors.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Confinement of topological excitations into particle-like states - typically
associated with theories of elementary particles - are known to occur in
condensed matter systems, arising as domain-wall confinement in quantum spin
chains. However, investigation of confinement in the condensed matter setting
has rarely ventured beyond lattice spin systems. Here, we analyze the
confinement of sine-Gordon solitons into mesonic bound states in a
one-dimensional, quantum electronic circuit~(QEC) array, constructed using
experimentally-demonstrated circuit elements: Josephson junctions, capacitors
and $0-\pi$ qubits. The interactions occurring naturally in the QEC array, due
to tunneling of Cooper-pairs and pairs of Cooper-pairs, give rise to a
non-integrable, interacting, lattice model of quantum rotors. In the scaling
limit, the latter is described by the quantum sine-Gordon model, perturbed by a
cosine potential with a different periodicity. We compute the string tension of
confinement of sine-Gordon solitons and the changes in the low-lying spectrum
in the perturbed model. The scaling limit is reached faster for the QEC array
compared to conventional spin chain regularizations, allowing high-precision
numerical investigation of the strong-coupling regime of this non-integrable
quantum field theory. Our results, obtained using the density matrix
renormalization group method, could be verified in a quench experiment using
state-of-the-art QEC technologies.
Related papers
- Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Quantum Chaos and Coherence: Random Parametric Quantum Channels [0.0]
We quantify interplay between quantum chaos and decoherence away from the semi-classical limit.
We introduce Parametric Quantum Channels (PQC), a discrete-time model of unitary evolution mixed with the effects of measurements or transient interactions with an environment.
arXiv Detail & Related papers (2023-05-30T18:00:06Z) - Squeezing oscillations in a multimode bosonic Josephson junction [0.4335300149154109]
We show how to enhance the quantum correlations in a one-dimensional multimode bosonic Josephson junction.
Our work provides new ways for engineering correlations and entanglement in the external degree of freedom of interacting many-body systems.
arXiv Detail & Related papers (2023-04-05T23:29:05Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Variational thermal quantum simulation of the lattice Schwinger model [0.0]
We propose a variational approach, using the lattice Schwinger model, to simulate the confinement or deconfinement.
Results of numeral simulation show that the string tension decreases both along the increasing of the temperature and the chemical potential.
Our work paves a way for exploiting near-term quantum computers for investigating the phase diagram of finite-temperature and finite density for nuclear matters.
arXiv Detail & Related papers (2022-05-25T13:29:05Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Effect of Emitters on Quantum State Transfer in Coupled Cavity Arrays [48.06402199083057]
We study the effects of atoms in cavities which can absorb and emit photons as they propagate down the array.
Our model is equivalent to previously examined spin chains in the one-excitation sector and in the absence of emitters.
arXiv Detail & Related papers (2021-12-10T18:52:07Z) - Breakdown of quantum-classical correspondence and dynamical generation
of entanglement [6.167267225728292]
We study the generation of quantum entanglement induced by an ideal Fermi gas confined in a chaotic cavity.
We find that the breakdown of the quantum-classical correspondence of particle motion, via dramatically changing the spatial structure of many-body wavefunction, leads to profound changes of the entanglement structure.
arXiv Detail & Related papers (2021-04-14T03:09:24Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Variational Quantum Simulation for Periodic Materials [0.0]
We present a quantum-classical hybrid algorithm that simulates electronic structures of periodic systems such as ground states and quasiparticle band structures.
Our work establishes a powerful interface between the rapidly developing quantum technology and modern material science.
arXiv Detail & Related papers (2020-08-21T14:15:28Z) - Quantum decoherence by Coulomb interaction [58.720142291102135]
We present an experimental study of the Coulomb-induced decoherence of free electrons in a superposition state in a biprism electron interferometer close to a semiconducting and metallic surface.
The results will enable the determination and minimization of specific decoherence channels in the design of novel quantum instruments.
arXiv Detail & Related papers (2020-01-17T04:11:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.