論文の概要: Dynamic Molecular Graph-based Implementation for Biophysical Properties
Prediction
- arxiv url: http://arxiv.org/abs/2212.09991v1
- Date: Tue, 20 Dec 2022 04:21:19 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-21 17:17:14.696290
- Title: Dynamic Molecular Graph-based Implementation for Biophysical Properties
Prediction
- Title(参考訳): 動的分子グラフによる生体物性予測の実装
- Authors: Carter Knutson, Gihan Panapitiya, Rohith Varikoti, Neeraj Kumar
- Abstract要約: 本稿では,タンパク質-リガンド相互作用の動的特徴を特徴付けるため,GNNを用いたトランスフォーマーモデルに基づく新しいアプローチを提案する。
我々のメッセージパッシングトランスフォーマーは、物理シミュレーションに基づく分子動力学データに基づいて事前訓練を行い、座標構成を学習し、結合確率と親和性予測を行う。
- 参考スコア(独自算出の注目度): 9.112532782451233
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Neural Networks (GNNs) have revolutionized the molecular discovery to
understand patterns and identify unknown features that can aid in predicting
biophysical properties and protein-ligand interactions. However, current models
typically rely on 2-dimensional molecular representations as input, and while
utilization of 2\3- dimensional structural data has gained deserved traction in
recent years as many of these models are still limited to static graph
representations. We propose a novel approach based on the transformer model
utilizing GNNs for characterizing dynamic features of protein-ligand
interactions. Our message passing transformer pre-trains on a set of molecular
dynamic data based off of physics-based simulations to learn coordinate
construction and make binding probability and affinity predictions as a
downstream task. Through extensive testing we compare our results with the
existing models, our MDA-PLI model was able to outperform the molecular
interaction prediction models with an RMSE of 1.2958. The geometric encodings
enabled by our transformer architecture and the addition of time series data
add a new dimensionality to this form of research.
- Abstract(参考訳): ニューラルネットワーク(GNN)は、分子発見を革新し、パターンを理解し、生物物理学的性質やタンパク質-リガンド相互作用を予測するのに役立つ未知の特徴を特定する。
しかし、現在のモデルは通常、入力として2次元の分子表現に依存するが、2\3次元の構造データの利用は近年、多くのモデルが依然として静的グラフ表現に制限されているため、注目に値するものとなっている。
本稿では,gnnを用いたトランスフォーマーモデルに基づくタンパク質-リガンド相互作用の動的特徴を特徴付ける新しい手法を提案する。
提案するメッセージパッシングトランスは,物理シミュレーションに基づいて分子動的データの集合を事前学習し,座標構築を学習し,下流タスクとして結合確率と親和性を予測する。
広範なテストを通じて、既存のモデルと比較し、mda-pliモデルは1.2958のrmseで分子相互作用予測モデルを上回ることができた。
変換器アーキテクチャと時系列データの追加によって実現された幾何学的エンコーディングは、この研究形式に新たな次元を与える。
関連論文リスト
- Pre-trained Molecular Language Models with Random Functional Group Masking [54.900360309677794]
SMILESをベースとしたアンダーリネム分子アンダーリネム言語アンダーリネムモデルを提案し,特定の分子原子に対応するSMILESサブシーケンスをランダムにマスキングする。
この技術は、モデルに分子構造や特性をよりよく推測させ、予測能力を高めることを目的としている。
論文 参考訳(メタデータ) (2024-11-03T01:56:15Z) - geom2vec: pretrained GNNs as geometric featurizers for conformational dynamics [0.0]
我々はGeom2vecを紹介し、トレーニング済みグラフニューラルネットワーク(GNN)を普遍的なデファクトライザとして利用する。
さらに微調整することなく分子幾何学的パターンを捉えた伝達可能な構造表現を学習する。
論文 参考訳(メタデータ) (2024-09-30T00:36:06Z) - Physically recurrent neural network for rate and path-dependent heterogeneous materials in a finite strain framework [0.0]
不均一物質のマイクロスケール解析のためのハイブリッド物理に基づくデータ駆動サロゲートモデルについて検討した。
提案したモデルは、ニューラルネットワークにそれらを埋め込むことで、フルオーダーのマイクロモデルで使用されるモデルに含まれる物理に基づく知識の恩恵を受ける。
論文 参考訳(メタデータ) (2024-04-05T12:40:03Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - ViSNet: an equivariant geometry-enhanced graph neural network with
vector-scalar interactive message passing for molecules [69.05950120497221]
本稿では、幾何学的特徴をエレガントに抽出し、分子構造を効率的にモデル化する同変幾何拡張グラフニューラルネットワークViSNetを提案する。
提案するViSNetは,MD17,MD17,MD22を含む複数のMDベンチマークにおける最先端の手法よりも優れ,QM9およびMolecule3Dデータセット上での優れた化学的特性予測を実現する。
論文 参考訳(メタデータ) (2022-10-29T07:12:46Z) - Graph neural networks for the prediction of molecular structure-property
relationships [59.11160990637615]
グラフニューラルネットワーク(GNN)は、分子グラフ上で直接動作する新しい機械学習手法である。
GNNは、エンドツーエンドでプロパティを学習できるため、情報記述子の必要性を回避することができる。
本稿では、分子特性予測のための2つの例を通して、GNNの基礎を説明し、GNNの応用を実証する。
論文 参考訳(メタデータ) (2022-07-25T11:30:44Z) - GTrans: Spatiotemporal Autoregressive Transformer with Graph Embeddings
for Nowcasting Extreme Events [5.672898304129217]
本稿では,データ特徴をグラフ埋め込みに変換し,テンポラルダイナミクスをトランスフォーマーモデルで予測する時間モデルGTransを提案する。
我々の実験によると、GTransは空間的および時間的ダイナミクスをモデル化し、データセットの極端なイベントを放送することができる。
論文 参考訳(メタデータ) (2022-01-18T03:26:24Z) - Augmenting Molecular Deep Generative Models with Topological Data
Analysis Representations [21.237758981760784]
分子のトポロジカルデータ解析(TDA)表現を付加したSMILES変分自動エンコーダ(VAE)を提案する。
実験の結果, このTDA拡張により, SMILES VAEは3次元幾何学と電子特性の複雑な関係を捉えることができることがわかった。
論文 参考訳(メタデータ) (2021-06-08T15:49:21Z) - TCL: Transformer-based Dynamic Graph Modelling via Contrastive Learning [87.38675639186405]
我々は,動的に進化するグラフを連続的に扱う,TCLと呼ばれる新しいグラフニューラルネットワークアプローチを提案する。
我々の知る限りでは、これは動的グラフ上の表現学習にコントラスト学習を適用する最初の試みである。
論文 参考訳(メタデータ) (2021-05-17T15:33:25Z) - Learning Neural Generative Dynamics for Molecular Conformation
Generation [89.03173504444415]
分子グラフから分子コンフォメーション(つまり3d構造)を生成する方法を検討した。
分子グラフから有効かつ多様なコンフォーメーションを生成する新しい確率論的枠組みを提案する。
論文 参考訳(メタデータ) (2021-02-20T03:17:58Z) - Physics-Constrained Predictive Molecular Latent Space Discovery with
Graph Scattering Variational Autoencoder [0.0]
我々は小データ構造における変分推論とグラフ理論に基づく分子生成モデルを開発する。
モデルの性能は、所望の目的特性を持つ分子を生成することによって評価される。
論文 参考訳(メタデータ) (2020-09-29T09:05:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。