Real-time Health Monitoring of Heat Exchangers using Hypernetworks and
PINNs
- URL: http://arxiv.org/abs/2212.10032v1
- Date: Tue, 20 Dec 2022 07:07:44 GMT
- Title: Real-time Health Monitoring of Heat Exchangers using Hypernetworks and
PINNs
- Authors: Ritam Majumdar, Vishal Jadhav, Anirudh Deodhar, Shirish Karande,
Lovekesh Vig, Venkataramana Runkana
- Abstract summary: A hypernetwork based approach is used to enable the domain-decomposed PINN learn the thermal behavior of the heat exchanger.
We achieve orders of magnitude reduction in inference time in comparison to existing PINNs, while maintaining the accuracy on par with the physics-based simulations.
- Score: 12.23889788846524
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We demonstrate a Physics-informed Neural Network (PINN) based model for
real-time health monitoring of a heat exchanger, that plays a critical role in
improving energy efficiency of thermal power plants. A hypernetwork based
approach is used to enable the domain-decomposed PINN learn the thermal
behavior of the heat exchanger in response to dynamic boundary conditions,
eliminating the need to re-train. As a result, we achieve orders of magnitude
reduction in inference time in comparison to existing PINNs, while maintaining
the accuracy on par with the physics-based simulations. This makes the approach
very attractive for predictive maintenance of the heat exchanger in digital
twin environments.
Related papers
- Deep-Unrolling Multidimensional Harmonic Retrieval Algorithms on Neuromorphic Hardware [78.17783007774295]
This paper explores the potential of conversion-based neuromorphic algorithms for highly accurate and energy-efficient single-snapshot multidimensional harmonic retrieval.
A novel method for converting the complex-valued convolutional layers and activations into spiking neural networks (SNNs) is developed.
The converted SNNs achieve almost five-fold power efficiency at moderate performance loss compared to the original CNNs.
arXiv Detail & Related papers (2024-12-05T09:41:33Z) - Advancing Heatwave Forecasting via Distribution Informed-Graph Neural Networks (DI-GNNs): Integrating Extreme Value Theory with GNNs [3.1648929705158357]
Heatwaves, prolonged periods of extreme heat, have intensified in frequency and severity due to climate change.
accurate heatwave forecasting at weather scales (1--15 days) remains challenging due to the non-linear interactions between atmospheric drivers and the rarity of these extreme events.
This study introduces the Distribution-Informed Graph Neural Network (DI-GNN), a novel framework that integrates principles from Extreme Value Theory (EVT) into the graph neural network architecture.
arXiv Detail & Related papers (2024-11-20T17:45:03Z) - SAfEPaTh: A System-Level Approach for Efficient Power and Thermal Estimation of Convolutional Neural Network Accelerator [4.1221717424687165]
This paper introduces SAfEPaTh, a novel system-level approach for accurately estimating power and temperature in tile-based CNN accelerators.
By addressing both steady-state and transient-state scenarios, SAfEPaTh effectively captures the dynamic effects of pipeline bubbles in interlayer pipelines.
arXiv Detail & Related papers (2024-07-24T20:29:52Z) - vHeat: Building Vision Models upon Heat Conduction [63.00030330898876]
vHeat is a novel vision backbone model that simultaneously achieves both high computational efficiency and global receptive field.
The essential idea is to conceptualize image patches as heat sources and model the calculation of their correlations as the diffusion of thermal energy.
arXiv Detail & Related papers (2024-05-26T12:58:04Z) - Residual-based Attention Physics-informed Neural Networks for Spatio-Temporal Ageing Assessment of Transformers Operated in Renewable Power Plants [0.6223528900192875]
This article introduces a-temporal model for transformer winding temperature and ageing.
It uses physics-based partial differential equations with data-driven Neural Networks.
Results are validated with a distribution transformer operating on a floating photovoltaic power plant.
arXiv Detail & Related papers (2024-05-10T12:48:57Z) - Leveraging Low-Rank and Sparse Recurrent Connectivity for Robust
Closed-Loop Control [63.310780486820796]
We show how a parameterization of recurrent connectivity influences robustness in closed-loop settings.
We find that closed-form continuous-time neural networks (CfCs) with fewer parameters can outperform their full-rank, fully-connected counterparts.
arXiv Detail & Related papers (2023-10-05T21:44:18Z) - Application of Zone Method based Physics-Informed Neural Networks in
Reheating Furnaces [25.031487600209346]
Foundation Industries (FIs) constitute glass, metals, cement, ceramics, bulk chemicals, paper, steel, etc.
Reheating furnaces within the manufacturing chain of FIs are energy-intensive.
Accurate and real-time prediction of underlying temperatures in reheating furnaces has the potential to reduce the overall heating time.
We propose a Physics-Informed Neural Network (PINN) by incorporating prior physical knowledge using a set of novel Energy-Balance regularizers.
arXiv Detail & Related papers (2023-08-30T15:26:35Z) - Energy-Efficient Model Compression and Splitting for Collaborative
Inference Over Time-Varying Channels [52.60092598312894]
We propose a technique to reduce the total energy bill at the edge device by utilizing model compression and time-varying model split between the edge and remote nodes.
Our proposed solution results in minimal energy consumption and $CO$ emission compared to the considered baselines.
arXiv Detail & Related papers (2021-06-02T07:36:27Z) - Physics-Informed Neural Network for Modelling the Thermochemical Curing
Process of Composite-Tool Systems During Manufacture [11.252083314920108]
We present a PINN to simulate thermochemical evolution of a composite material on a tool undergoing cure in an autoclave.
We train the PINN with a technique that automatically adapts the weights on the loss terms corresponding to PDE, boundary, interface, and initial conditions.
The performance of the proposed PINN is demonstrated in multiple scenarios with different material thicknesses and thermal boundary conditions.
arXiv Detail & Related papers (2020-11-27T00:56:15Z) - Training End-to-End Analog Neural Networks with Equilibrium Propagation [64.0476282000118]
We introduce a principled method to train end-to-end analog neural networks by gradient descent.
We show mathematically that a class of analog neural networks (called nonlinear resistive networks) are energy-based models.
Our work can guide the development of a new generation of ultra-fast, compact and low-power neural networks supporting on-chip learning.
arXiv Detail & Related papers (2020-06-02T23:38:35Z) - NeurOpt: Neural network based optimization for building energy
management and climate control [58.06411999767069]
We propose a data-driven control algorithm based on neural networks to reduce this cost of model identification.
We validate our learning and control algorithms on a two-story building with ten independently controlled zones, located in Italy.
arXiv Detail & Related papers (2020-01-22T00:51:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.