Instantons and the quantum bound to chaos
- URL: http://arxiv.org/abs/2212.10202v1
- Date: Tue, 20 Dec 2022 12:30:10 GMT
- Title: Instantons and the quantum bound to chaos
- Authors: Vijay Ganesh Sadhasivam, Lars Meuser, David R. Reichman, Stuart C.
Althorpe
- Abstract summary: A remarkable prediction is that the associated Lyapunov exponent obeys a universal bound $lambda 2 pi k_B T/hbar$.
We investigate the statistical origin of the bound by applying ring-polymer molecular dynamics to a classically chaotic double well.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Out-of-time-ordered correlators (OTOCs) can be used to quantify quantum
scrambling or information loss (loosely referred to as `quantum chaos'). A
remarkable prediction is that the associated Lyapunov exponent obeys a
universal bound $\lambda < {2 \pi k_B T}/\hbar$. Here we investigate the
statistical origin of the bound by applying ring-polymer molecular dynamics
(RPMD) to a classically chaotic double well. On the timescale for exponential
growth of the OTOC, RPMD is an artificial classical dynamics (in an extended
phase space), which has the property of conserving the quantum Boltzmann
distribution. We find that this property alone is sufficient to make the RPMD
OTOC satisfy the bound, which is imposed on the chaotic RPMD trajectories by
the Hessian of the imaginary-time action at the barrier instanton. Similar
instantons are likely to be associated with the OTOC bound in many (perhaps
all) of the diverse range of systems in which it has been observed.
Related papers
- Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Quantum Lyapunov exponent in dissipative systems [68.8204255655161]
The out-of-time order correlator (OTOC) has been widely studied in closed quantum systems.
We study the interplay between these two processes.
The OTOC decay rate is closely related to the classical Lyapunov.
arXiv Detail & Related papers (2022-11-11T17:06:45Z) - Growth of entanglement of generic states under dual-unitary dynamics [77.34726150561087]
Dual-unitary circuits are a class of locally-interacting quantum many-body systems.
In particular, they admit a class of solvable" initial states for which, in the thermodynamic limit, one can access the full non-equilibrium dynamics.
We show that in this case the entanglement increment during a time step is sub-maximal for finite times, however, it approaches the maximal value in the infinite-time limit.
arXiv Detail & Related papers (2022-07-29T18:20:09Z) - Quantum dynamics corresponding to chaotic BKL scenario [62.997667081978825]
Quantization smears the gravitational singularity avoiding its localization in the configuration space.
Results suggest that the generic singularity of general relativity can be avoided at quantum level.
arXiv Detail & Related papers (2022-04-24T13:32:45Z) - Chaos in coupled Kerr-nonlinear parametric oscillators [0.0]
We investigate complex dynamics, i.e., chaos, in two coupled nondissipative KPOs at a few-photon level.
We conclude that some of them can be regarded as quantum signatures of chaos, together with energy-level spacing statistics.
arXiv Detail & Related papers (2021-10-08T10:35:12Z) - False signals of chaos from quantum probes [0.0]
We demonstrate that two-time correlation functions, which are generalizations of out-of-time-ordered correlators, can show 'false-flags' of chaos.
We analyze a system of bosons trapped in a double-well potential and probed by a quantum dot.
arXiv Detail & Related papers (2021-08-20T22:36:06Z) - Out-of-time-order correlations and the fine structure of eigenstate
thermalisation [58.720142291102135]
Out-of-time-orderors (OTOCs) have become established as a tool to characterise quantum information dynamics and thermalisation.
We show explicitly that the OTOC is indeed a precise tool to explore the fine details of the Eigenstate Thermalisation Hypothesis (ETH)
We provide an estimation of the finite-size scaling of $omega_textrmGOE$ for the general class of observables composed of sums of local operators in the infinite-temperature regime.
arXiv Detail & Related papers (2021-03-01T17:51:46Z) - Fingerprint of chaos and quantum scars in kicked Dicke model: An
out-of-time-order correlator study [0.3867363075280543]
We investigate the onset of chaos in a periodically kicked Dicke model (KDM) using the out-of-time-order correlator (OTOC) as a diagnostic tool.
In the large spin limit, the classical Hamiltonian map is constructed, which allows us to investigate the corresponding phase space dynamics.
The relevance of the present study in the context of ongoing cold atom experiments is also discussed.
arXiv Detail & Related papers (2021-01-13T15:53:53Z) - Topological lower bound on quantum chaos by entanglement growth [0.7734726150561088]
We show that for one-dimensional quantum cellular automata there exists a lower bound on quantum chaos quantified by entanglement entropy.
Our result is robust against exponential tails which naturally appear in quantum dynamics generated by local Hamiltonians.
arXiv Detail & Related papers (2020-12-04T18:48:56Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - The Cosmological OTOC: Formulating new cosmological micro-canonical
correlation functions for random chaotic fluctuations in Out-of-Equilibrium
Quantum Statistical Field Theory [0.0]
The out-of-time correlation function is an important new probe in quantum field theory which is treated as a significant measure of random quantum correlations.
We demonstrate a formalism using which for the first time we compute the Cosmological OTOC during the particle production during inflation and reheating.
arXiv Detail & Related papers (2020-05-24T14:18:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.