論文の概要: Inversion of Bayesian Networks
- arxiv url: http://arxiv.org/abs/2212.10649v2
- Date: Thu, 2 Nov 2023 13:17:09 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-03 18:24:18.634460
- Title: Inversion of Bayesian Networks
- Title(参考訳): ベイズネットワークのインバージョン
- Authors: Jesse van Oostrum, Peter van Hintum, Nihat Ay
- Abstract要約: 本研究では,認識ネットワークに必要な十分な特性について検討し,真の後部分布を正確にモデル化する。
局所的な条件では、プロパティ完全性(すべてのノード、すべての親が参加する)が重要な役割を果たす。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Variational autoencoders and Helmholtz machines use a recognition network
(encoder) to approximate the posterior distribution of a generative model
(decoder). In this paper we study the necessary and sufficient properties of a
recognition network so that it can model the true posterior distribution
exactly. These results are derived in the general context of probabilistic
graphical modelling / Bayesian networks, for which the network represents a set
of conditional independence statements. We derive both global conditions, in
terms of d-separation, and local conditions for the recognition network to have
the desired qualities. It turns out that for the local conditions the property
perfectness (for every node, all parents are joined) plays an important role.
- Abstract(参考訳): 変分オートエンコーダとヘルムホルツマシンは認識ネットワーク(encoder)を使用して生成モデル(decoder)の後方分布を近似する。
本稿では,認識ネットワークの真の後方分布を正確にモデル化するために必要かつ十分な特性について検討する。
これらの結果は確率的グラフィカルモデリング/ベイジアンネットワークの一般的な文脈で導出され、ネットワークは条件付き独立文の集合を表す。
我々は、d分離の観点からのグローバル条件と、認識ネットワークが望ましい品質を持つための局所条件の両方を導出する。
局所的な条件では、プロパティ完全性(すべてのノードにおいて、すべての親が参加する)が重要な役割を果たす。
関連論文リスト
- Generative Conditional Distributions by Neural (Entropic) Optimal Transport [12.152228552335798]
本稿では,条件分布の生成モデル学習を目的とした,ニューラルエントロピー最適輸送手法を提案する。
提案手法は,2つのニューラルネットワークのミニマックストレーニングに依存する。
実世界のデータセットを用いた実験では,現状条件分布学習法と比較して,アルゴリズムの有効性が示された。
論文 参考訳(メタデータ) (2024-06-04T13:45:35Z) - A Note on Bayesian Networks with Latent Root Variables [56.86503578982023]
残りの, 証明, 変数に対する限界分布もまたベイズ的ネットワークとして分解され, 経験的と呼ぶ。
マニフェスト変数の観測のデータセットにより、経験的ベイズネットのパラメータを定量化することができる。
論文 参考訳(メタデータ) (2024-02-26T23:53:34Z) - Numerically assisted determination of local models in network scenarios [55.2480439325792]
統計的振る舞いを再現する明示的な局所モデルを見つけるための数値ツールを開発する。
グリーンベルガー・ホルン・ザイリンガー(GHZ)およびW分布の臨界振動性に関する予想を提供する。
開発されたコードとドキュメントは、281.com/mariofilho/localmodelsで公開されている。
論文 参考訳(メタデータ) (2023-03-17T13:24:04Z) - Redes Generativas Adversarias (GAN) Fundamentos Te\'oricos y
Aplicaciones [0.40611352512781856]
GAN(Generative Adversarial Network)は、ジェネレータとジェネレータと呼ばれる2つのニューラルネットワークのトレーニングに基づく手法である。
GANはコンピュータビジョン、セマンティックセグメンテーション、時系列合成、画像編集、自然言語処理、テキストからの画像生成など幅広い分野で応用されている。
論文 参考訳(メタデータ) (2023-02-18T14:39:51Z) - Probabilistic Verification of ReLU Neural Networks via Characteristic
Functions [11.489187712465325]
我々は、周波数領域における確率理論のアイデアを用いて、ReLUニューラルネットワークの確率論的検証保証を提供する。
我々は、(深い)フィードフォワードニューラルネットワークを有限地平線上の離散力学系として解釈する。
出力集合の累積分布関数を求め,ネットワークが期待通りに動作しているかどうかを確認する。
論文 参考訳(メタデータ) (2022-12-03T05:53:57Z) - Incorporating Crowdsourced Annotator Distributions into Ensemble
Modeling to Improve Classification Trustworthiness for Ancient Greek Papyri [3.870354915766567]
このようなデータセットの問題を複雑にする2つの問題は、クラス不均衡とラベリングにおける地道不確実性である。
このようなデータセットに対するアンサンブルモデリングの応用は、地上の真実が疑問視されている画像を特定し、それらのサンプルの信頼性を定量化するのに役立ちます。
論文 参考訳(メタデータ) (2022-10-28T19:39:14Z) - On the Effective Number of Linear Regions in Shallow Univariate ReLU
Networks: Convergence Guarantees and Implicit Bias [50.84569563188485]
我々は、ラベルが$r$のニューロンを持つターゲットネットワークの符号によって決定されるとき、勾配流が方向収束することを示す。
我々の結果は、標本サイズによらず、幅が$tildemathcalO(r)$である、緩やかなオーバーパラメータ化をすでに維持しているかもしれない。
論文 参考訳(メタデータ) (2022-05-18T16:57:10Z) - Reconsidering Dependency Networks from an Information Geometry
Perspective [2.6778110563115542]
依存ネットワークは、多数の変数を含むシステムの潜在的な確率的グラフィカルモデルである。
依存ネットワークの構造は有向グラフで表され、各ノードは条件付き確率テーブルを持つ。
従属ネットワークとベイズネットワークは,学習した分布の精度においてほぼ同じ性能を示すことを示す。
論文 参考訳(メタデータ) (2021-07-02T07:05:11Z) - Full network nonlocality [68.8204255655161]
ネットワーク内のすべてのリンクが非ローカルリソースを分散するために必要となる相関関係を記述した完全ネットワーク非ローカル性の概念を導入する。
最もよく知られているネットワークベル試験では,ネットワークの非局所性は見られていない。
より一般に、ネットワーク内の局所的および理論に依存しない相関を解析するための確立された手法は、完全なネットワーク非局所性のための十分な条件を導出するために組み合わせることができると指摘する。
論文 参考訳(メタデータ) (2021-05-19T18:00:02Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z) - GANs with Conditional Independence Graphs: On Subadditivity of
Probability Divergences [70.30467057209405]
GAN(Generative Adversarial Networks)は、データセットの基盤となる分布を学習するための現代的な手法である。
GANは、基礎となるディストリビューションに関する追加情報がないモデルフリーで設計されている。
本稿では,ベイズネット/MRFの近傍に単純な識別器群を用いたモデルベースGANの設計を提案する。
論文 参考訳(メタデータ) (2020-03-02T04:31:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。