A Physics-Informed Neural Network to Model Port Channels
- URL: http://arxiv.org/abs/2212.10681v1
- Date: Tue, 20 Dec 2022 22:53:19 GMT
- Title: A Physics-Informed Neural Network to Model Port Channels
- Authors: Marlon S. Mathias, Marcel R. de Barros, Jefferson F. Coelho, Lucas P.
de Freitas, Felipe M. Moreno, Caio F. D. Netto, Fabio G. Cozman, Anna H. R.
Costa, Eduardo A. Tannuri, Edson S. Gomi, Marcelo Dottori
- Abstract summary: PINN models aim to combine the knowledge of physical systems and data-driven machine learning models.
First, we design our model to assume that the flow is periodic in time, which is not feasible in conventional simulation methods.
Second, we evaluate the benefit of resampling the function evaluation points during training, which has a near zero computational cost.
- Score: 0.09830751917335563
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We describe a Physics-Informed Neural Network (PINN) that simulates the flow
induced by the astronomical tide in a synthetic port channel, with dimensions
based on the Santos - S\~ao Vicente - Bertioga Estuarine System. PINN models
aim to combine the knowledge of physical systems and data-driven machine
learning models. This is done by training a neural network to minimize the
residuals of the governing equations in sample points. In this work, our flow
is governed by the Navier-Stokes equations with some approximations. There are
two main novelties in this paper. First, we design our model to assume that the
flow is periodic in time, which is not feasible in conventional simulation
methods. Second, we evaluate the benefit of resampling the function evaluation
points during training, which has a near zero computational cost and has been
verified to improve the final model, especially for small batch sizes. Finally,
we discuss some limitations of the approximations used in the Navier-Stokes
equations regarding the modeling of turbulence and how it interacts with PINNs.
Related papers
- Transport-Embedded Neural Architecture: Redefining the Landscape of physics aware neural models in fluid mechanics [0.0]
A physical problem, the Taylor-Green vortex, defined on a bi-periodic domain, is used as a benchmark to evaluate the performance of both the standard physics-informed neural network and our model.
Results exhibit that while the standard physics-informed neural network fails to predict the solution accurately and merely returns the initial condition for the entire time span, our model successfully captures the temporal changes in the physics.
arXiv Detail & Related papers (2024-10-05T10:32:51Z) - Neural Networks-based Random Vortex Methods for Modelling Incompressible Flows [0.0]
We introduce a novel Neural Networks-based approach for approximating solutions to the (2D) incompressible Navier--Stokes equations.
Our algorithm uses a Physics-informed Neural Network, that approximates the vorticity based on a loss function that uses a computationally efficient formulation of the Random Vortex dynamics.
arXiv Detail & Related papers (2024-05-22T14:36:23Z) - Learning Generic Solutions for Multiphase Transport in Porous Media via
the Flux Functions Operator [0.0]
DeepDeepONet has emerged as a powerful tool for accelerating rendering fluxDEs.
We use Physics-In DeepONets (PI-DeepONets) to achieve this mapping without any input paired-output observations.
arXiv Detail & Related papers (2023-07-03T21:10:30Z) - Neural Basis Functions for Accelerating Solutions to High Mach Euler
Equations [63.8376359764052]
We propose an approach to solving partial differential equations (PDEs) using a set of neural networks.
We regress a set of neural networks onto a reduced order Proper Orthogonal Decomposition (POD) basis.
These networks are then used in combination with a branch network that ingests the parameters of the prescribed PDE to compute a reduced order approximation to the PDE.
arXiv Detail & Related papers (2022-08-02T18:27:13Z) - Human Trajectory Prediction via Neural Social Physics [63.62824628085961]
Trajectory prediction has been widely pursued in many fields, and many model-based and model-free methods have been explored.
We propose a new method combining both methodologies based on a new Neural Differential Equation model.
Our new model (Neural Social Physics or NSP) is a deep neural network within which we use an explicit physics model with learnable parameters.
arXiv Detail & Related papers (2022-07-21T12:11:18Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
We study the capability of artificial neural network models to emulate storm surge based on the storm track/size/intensity history.
This study presents a neural network model that can predict storm surge, informed by a database of synthetic storm simulations.
arXiv Detail & Related papers (2022-04-18T23:42:18Z) - Physics Informed RNN-DCT Networks for Time-Dependent Partial
Differential Equations [62.81701992551728]
We present a physics-informed framework for solving time-dependent partial differential equations.
Our model utilizes discrete cosine transforms to encode spatial and recurrent neural networks.
We show experimental results on the Taylor-Green vortex solution to the Navier-Stokes equations.
arXiv Detail & Related papers (2022-02-24T20:46:52Z) - Learning Free-Surface Flow with Physics-Informed Neural Networks [0.0]
We build on the notion of physics-informed neural networks (PINNs) and employ them in the area of shallow-water equation (SWE) models.
These models play an important role in modeling and simulating free-surface flow scenarios such as in flood-wave propagation or tsunami waves.
arXiv Detail & Related papers (2021-11-17T18:45:55Z) - Training Feedback Spiking Neural Networks by Implicit Differentiation on
the Equilibrium State [66.2457134675891]
Spiking neural networks (SNNs) are brain-inspired models that enable energy-efficient implementation on neuromorphic hardware.
Most existing methods imitate the backpropagation framework and feedforward architectures for artificial neural networks.
We propose a novel training method that does not rely on the exact reverse of the forward computation.
arXiv Detail & Related papers (2021-09-29T07:46:54Z) - Simultaneous boundary shape estimation and velocity field de-noising in
Magnetic Resonance Velocimetry using Physics-informed Neural Networks [70.7321040534471]
Magnetic resonance velocimetry (MRV) is a non-invasive technique widely used in medicine and engineering to measure the velocity field of a fluid.
Previous studies have required the shape of the boundary (for example, a blood vessel) to be known a priori.
We present a physics-informed neural network that instead uses the noisy MRV data alone to infer the most likely boundary shape and de-noised velocity field.
arXiv Detail & Related papers (2021-07-16T12:56:09Z) - Physics-informed deep learning for incompressible laminar flows [13.084113582897965]
We propose a mixed-variable scheme of physics-informed neural network (PINN) for fluid dynamics.
A parametric study indicates that the mixed-variable scheme can improve the PINN trainability and the solution accuracy.
arXiv Detail & Related papers (2020-02-24T21:51:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.