論文の概要: Towards Rapid Prototyping and Comparability in Active Learning for Deep
Object Detection
- arxiv url: http://arxiv.org/abs/2212.10836v1
- Date: Wed, 21 Dec 2022 08:13:43 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-22 14:10:57.300762
- Title: Towards Rapid Prototyping and Comparability in Active Learning for Deep
Object Detection
- Title(参考訳): 深部物体検出のための能動学習における高速プロトタイピングと比較可能性
- Authors: Tobias Riedlinger, Marius Schubert, Karsten Kahl, Hanno Gottschalk and
Matthias Rottmann
- Abstract要約: 本研究では,深層物体検出における能動的学習の迅速な開発と透過的評価のためのサンドボックス構成を提案する。
これにより、BDD100kと比較した場合、Pascal VOCと32とを比較すると、結果の合計計算時間と学習行動を評価することができる。
- 参考スコア(独自算出の注目度): 5.5997926295092295
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Active learning as a paradigm in deep learning is especially important in
applications involving intricate perception tasks such as object detection
where labels are difficult and expensive to acquire. Development of active
learning methods in such fields is highly computationally expensive and time
consuming which obstructs the progression of research and leads to a lack of
comparability between methods. In this work, we propose and investigate a
sandbox setup for rapid development and transparent evaluation of active
learning in deep object detection. Our experiments with commonly used
configurations of datasets and detection architectures found in the literature
show that results obtained in our sandbox environment are representative of
results on standard configurations. The total compute time to obtain results
and assess the learning behavior can thereby be reduced by factors of up to 14
when comparing with Pascal VOC and up to 32 when comparing with BDD100k. This
allows for testing and evaluating data acquisition and labeling strategies in
under half a day and contributes to the transparency and development speed in
the field of active learning for object detection.
- Abstract(参考訳): ディープラーニングのパラダイムとしてのアクティブラーニングは、ラベル取得が困難で高価であるオブジェクト検出のような複雑な知覚タスクを含むアプリケーションにおいて特に重要である。
このような分野におけるアクティブラーニング手法の開発は、計算コストが高く、研究の進行を妨げる時間を要するため、手法間の比較可能性の欠如につながる。
本研究では,深層物体検出における能動的学習の迅速な開発と透過的評価のためのサンドボックス構成を提案する。
文献で見られるデータセットや検出アーキテクチャの一般的な構成を用いた実験により,サンドボックス環境において得られた結果が標準構成の結果を表していることが示された。
これにより、pascal vocと比較して最大14、bdd100kと比較した場合最大32の因子により、結果を得て学習行動を評価する合計計算時間を削減できる。
これにより、半日以内のデータ取得とラベリング戦略のテストと評価が可能になり、オブジェクト検出のアクティブラーニングの分野での透明性と開発速度に寄与する。
関連論文リスト
- Understanding active learning of molecular docking and its applications [0.6554326244334868]
本研究では,2次元構造のみを用いて,能動的学習手法がドッキングスコアを効果的に予測する方法を検討する。
以上の結果から,サロゲートモデルではドッキング量の高い化合物に代表される構造パターンを記憶する傾向が示唆された。
我々の総合的な分析は、仮想スクリーニングキャンペーンにおけるアクティブラーニング手法の信頼性と潜在的な適用可能性を示している。
論文 参考訳(メタデータ) (2024-06-14T05:43:42Z) - Improving Interpretability of Deep Active Learning for Flood Inundation Mapping Through Class Ambiguity Indices Using Multi-spectral Satellite Imagery [1.842368798362815]
浸水マップは地球温暖化に伴う浸水リスクの増加に対応する重要な課題である。
教師付き学習における時間と労働集約的なデータラベリングプロセスに対処するため、深層学習戦略は実現可能なアプローチの1つである。
フラッドインダクションマッピング(IDAL-FIM)のための解釈可能な深部能動学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-29T18:33:17Z) - Learning from the Best: Active Learning for Wireless Communications [9.523381807291049]
アクティブな学習アルゴリズムは、ラベル付けされていないデータセットの中で最も重要で情報に富んだサンプルを特定し、完全なデータセットではなく、これらのサンプルのみをラベル付けする。
本稿では, ディープラーニングに基づくmmWaveビーム選択のケーススタディとして, 包括探索に基づく計算集約アルゴリズムを用いてラベル付けを行う。
この結果から,クラス不均衡データセットに対するアクティブな学習アルゴリズムを用いることで,データセットのラベル付けオーバーヘッドを最大50%削減できることがわかった。
論文 参考訳(メタデータ) (2024-01-23T12:21:57Z) - Practical Edge Detection via Robust Collaborative Learning [11.176517889212015]
エッジ検出は、幅広いビジョン指向タスクのコアコンポーネントである。
目標を達成するためには,2つの重要な問題に対処する必要がある。
非効率なトレーニング済みバックボーンからディープエッジモデルを緩和する方法。
トレーニングデータにおいて、ノイズや間違ったラベルからネガティブな影響を解放する方法。
論文 参考訳(メタデータ) (2023-08-27T12:12:27Z) - Temporal Output Discrepancy for Loss Estimation-based Active Learning [65.93767110342502]
ラベルのないサンプルが高損失を伴っていると信じられている場合に,データアノテーションのオラクルに問い合わせる,新しいディープラーニングアプローチを提案する。
本手法は,画像分類やセマンティックセグメンテーションタスクにおける最先端の能動学習手法よりも優れた性能を実現する。
論文 参考訳(メタデータ) (2022-12-20T19:29:37Z) - NEVIS'22: A Stream of 100 Tasks Sampled from 30 Years of Computer Vision
Research [96.53307645791179]
我々は,100以上の視覚的分類タスクのストリームからなるベンチマークであるNever-Ending VIsual-classification Stream (NEVIS'22)を紹介する。
分類に制限されているにもかかわらず、OCR、テクスチャ分析、シーン認識など、様々なタスクが生成される。
NEVIS'22は、タスクの規模と多様性のために、現在のシーケンシャルな学習アプローチに対して前例のない課題を提起している。
論文 参考訳(メタデータ) (2022-11-15T18:57:46Z) - ALBench: A Framework for Evaluating Active Learning in Object Detection [102.81795062493536]
本稿では、オブジェクト検出におけるアクティブラーニングを評価するために、ALBenchという名前のアクティブラーニングベンチマークフレームワークをコントリビュートする。
自動深層モデルトレーニングシステム上で開発されたこのALBenchフレームワークは、使いやすく、さまざまなアクティブな学習アルゴリズムと互換性があり、同じトレーニングおよびテストプロトコルを保証する。
論文 参考訳(メタデータ) (2022-07-27T07:46:23Z) - What Makes Good Contrastive Learning on Small-Scale Wearable-based
Tasks? [59.51457877578138]
本研究では,ウェアラブル型行動認識タスクにおけるコントラスト学習について検討する。
本稿では,PyTorchライブラリのtextttCL-HAR について述べる。
論文 参考訳(メタデータ) (2022-02-12T06:10:15Z) - Few-Cost Salient Object Detection with Adversarial-Paced Learning [95.0220555274653]
本稿では,少数のトレーニング画像にのみ手動アノテーションを応用して,効果的なサルエント物体検出モデルを学習することを提案する。
我々は,このタスクを,少額の有能な物体検出とみなし,少数のコストの学習シナリオを促進するために,APL(Adversarialpaced Learning)ベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2021-04-05T14:15:49Z) - Building Robust Industrial Applicable Object Detection Models Using
Transfer Learning and Single Pass Deep Learning Architectures [1.1816942730023883]
我々は、オブジェクト検出のタスク専用の深層畳み込みニューラルネットワークが、産業指向のオブジェクト検出パイプラインをどのように改善するかを探求する。
地域提案や分類,確率推定をひとつの実行で統合したディープラーニングアーキテクチャを用いて,リアルタイムのパフォーマンス向上を目指す。
本稿では,これらのアルゴリズムを2つの産業関連アプリケーションに適用し,その1つはアイトラッキングデータにおけるプロモーションボードの検出と,もう1つは拡張現実広告のための倉庫製品のパッケージの検出と認識である。
論文 参考訳(メタデータ) (2020-07-09T09:50:45Z) - AutoOD: Automated Outlier Detection via Curiosity-guided Search and
Self-imitation Learning [72.99415402575886]
外乱検出は重要なデータマイニングの課題であり、多くの実用的応用がある。
本稿では,最適なニューラルネットワークモデルを探すことを目的とした自動外乱検出フレームワークであるAutoODを提案する。
さまざまな実世界のベンチマークデータセットに対する実験結果から、AutoODが特定したディープモデルが最高のパフォーマンスを達成することが示された。
論文 参考訳(メタデータ) (2020-06-19T18:57:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。