論文の概要: Compact Graph Representation of molecular crystals using Point-wise
Distance Distributions
- arxiv url: http://arxiv.org/abs/2212.11246v1
- Date: Mon, 19 Dec 2022 18:48:58 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-22 15:56:48.615755
- Title: Compact Graph Representation of molecular crystals using Point-wise
Distance Distributions
- Title(参考訳): ポイントワイド距離分布を用いた分子結晶のコンパクトグラフ表現
- Authors: Jonathan Balasingham, Viktor Zamaraev, Vitaliy Kurlin
- Abstract要約: グラフは構造をキャプチャするが、結晶が示す対称性には不変である。
最先端の結果を含むいくつかのプロパティ予測では、Crystal Graphを使用している。
- 参考スコア(独自算出の注目度): 2.191505742658975
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Use of graphs to represent molecular crystals has become popular in recent
years as they provide a natural translation from atoms and bonds to nodes and
edges. Graphs capture structure, while remaining invariant to the symmetries
that crystals display. Several works in property prediction, including those
with state-of-the-art results, make use of the Crystal Graph. The present work
offers a graph based on Point-wise Distance Distributions which retains
symmetrical invariance, decreases computational load, and yields similar or
better prediction accuracy on both experimental and simulated crystals.
- Abstract(参考訳): 分子結晶を表すグラフの利用は、原子や結合からノードやエッジへの自然な翻訳を提供することによって近年人気を集めている。
グラフは構造をキャプチャするが、結晶が示す対称性には不変である。
最先端の結果を含むいくつかのプロパティ予測では、Crystal Graphを使用している。
本研究は, 対称不変性を保持し, 計算負荷を減少させ, 実験結晶およびシミュレーション結晶の予測精度を向上させる点距離分布に基づくグラフを提供する。
関連論文リスト
- Generalization of Geometric Graph Neural Networks [84.01980526069075]
幾何グラフニューラルネットワーク(GNN)の一般化能力について検討する。
我々は,このGNNの最適経験リスクと最適統計リスクとの一般化ギャップを証明した。
最も重要な観察は、前の結果のようにグラフのサイズに制限されるのではなく、1つの大きなグラフで一般化能力を実現することができることである。
論文 参考訳(メタデータ) (2024-09-08T18:55:57Z) - PDDFormer: Pairwise Distance Distribution Graph Transformer for Crystal Material Property Prediction [8.36720478795747]
本稿では,原子重み付きペアワイド距離分布 (WPDD) とユニットセルペアワイド距離分布 (UPDD) を初めて提案し,これをマルチエッジ結晶グラフの構築に取り入れた。
本手法は原子位置のわずかな摂動の下でも結晶グラフの連続性と完全性を維持することを実証する。
論文 参考訳(メタデータ) (2024-08-23T11:05:48Z) - CrysToGraph: A Comprehensive Predictive Model for Crystal Materials Properties and the Benchmark [16.456990796982186]
我々はCrysToGraph(textbfCrys$tals with $textbfT$ransformers $textbfo$n $textbfGraph$s)を提案する。
CrysToGraphは、トランスフォーマーベースのグラフ畳み込みブロックと、グラフワイドトランスフォーマーブロックとの長距離インタラクションを効果的にキャプチャする。
これは既存のほとんどの方法より優れており、非伝統的な結晶と伝統的な結晶の両方のベンチマークで新しい最先端の結果を達成する。
論文 参考訳(メタデータ) (2024-07-23T02:31:06Z) - Complete and Efficient Graph Transformers for Crystal Material Property Prediction [53.32754046881189]
結晶構造は、3次元空間の正則格子に沿って繰り返される原始単位セル内の原子塩基によって特徴づけられる。
本稿では,各原子の格子に基づく表現を確立するために,単位細胞の周期パターンを利用する新しい手法を提案する。
結晶材料に特化して設計されたSE(3)トランスであるComFormerを提案する。
論文 参考訳(メタデータ) (2024-03-18T15:06:37Z) - Graph Generation via Spectral Diffusion [51.60814773299899]
本稿では,1)グラフラプラシア行列のスペクトル分解と2)拡散過程に基づく新しいグラフ生成モデルGRASPを提案する。
具体的には、固有ベクトルと固有値のサンプリングにデノナイジングモデルを用い、グラフラプラシアン行列と隣接行列を再構成する。
我々の置換不変モデルは各ノードの固有ベクトルに連結することでノードの特徴を扱える。
論文 参考訳(メタデータ) (2024-02-29T09:26:46Z) - PerCNet: Periodic Complete Representation for Crystal Graphs [3.7050297294650716]
合理的な結晶表現法は、局所的および大域的な情報をキャプチャするべきである。
無限拡張結晶材料に対する周期的完全表現と計算アルゴリズムを提案する。
提案した表現に基づいて,結晶材料特性を予測するネットワークPerCNetを提案する。
論文 参考訳(メタデータ) (2023-12-03T08:55:35Z) - Graph Out-of-Distribution Generalization with Controllable Data
Augmentation [51.17476258673232]
グラフニューラルネットワーク(GNN)は,グラフ特性の分類において異常な性能を示した。
トレーニングとテストデータの選択バイアスが原因で、分散偏差が広まっています。
仮想サンプルの分布偏差を測定するためのOODキャリブレーションを提案する。
論文 参考訳(メタデータ) (2023-08-16T13:10:27Z) - From Spectrum Wavelet to Vertex Propagation: Graph Convolutional
Networks Based on Taylor Approximation [85.47548256308515]
グラフ畳み込みネットワーク(GCN)は、最近、ラベル付きデータと高次元特徴を持つデータセットの基盤構造を抽出するために利用されている。
既存のGCNは、主にグラフウェーブレット-カーネルの1次チェビシェフ近似に依存している。
論文 参考訳(メタデータ) (2020-07-01T20:07:13Z) - Convergence and Stability of Graph Convolutional Networks on Large
Random Graphs [22.387735135790706]
グラフ畳み込みネットワーク(GCN)の特性をランダムグラフの標準モデル上で解析することによって検討する。
まず,GCNの連続的な収束について検討し,ノード数の増加について検討する。
ランダムグラフモデルの小さな変形に対するGCNの安定性を解析する。
論文 参考訳(メタデータ) (2020-06-02T18:36:19Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
指数乱グラフ(ERG)の分野における重要な課題は、大きなグラフ上の非自明なERGの適合である。
本稿では,非自明なERGに対する近似フレームワークを提案する。
我々の手法は、数百万のノードからなるスパースグラフにスケーラブルである。
論文 参考訳(メタデータ) (2020-02-14T11:42:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。