論文の概要: Generalization of Geometric Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2409.05191v1
- Date: Sun, 8 Sep 2024 18:55:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-10 17:08:26.824454
- Title: Generalization of Geometric Graph Neural Networks
- Title(参考訳): 幾何学的グラフニューラルネットワークの一般化
- Authors: Zhiyang Wang, Juan Cervino, Alejandro Ribeiro,
- Abstract要約: 幾何グラフニューラルネットワーク(GNN)の一般化能力について検討する。
我々は,このGNNの最適経験リスクと最適統計リスクとの一般化ギャップを証明した。
最も重要な観察は、前の結果のようにグラフのサイズに制限されるのではなく、1つの大きなグラフで一般化能力を実現することができることである。
- 参考スコア(独自算出の注目度): 84.01980526069075
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: In this paper, we study the generalization capabilities of geometric graph neural networks (GNNs). We consider GNNs over a geometric graph constructed from a finite set of randomly sampled points over an embedded manifold with topological information captured. We prove a generalization gap between the optimal empirical risk and the optimal statistical risk of this GNN, which decreases with the number of sampled points from the manifold and increases with the dimension of the underlying manifold. This generalization gap ensures that the GNN trained on a graph on a set of sampled points can be utilized to process other unseen graphs constructed from the same underlying manifold. The most important observation is that the generalization capability can be realized with one large graph instead of being limited to the size of the graph as in previous results. The generalization gap is derived based on the non-asymptotic convergence result of a GNN on the sampled graph to the underlying manifold neural networks (MNNs). We verify this theoretical result with experiments on both Arxiv dataset and Cora dataset.
- Abstract(参考訳): 本稿では,幾何グラフニューラルネットワーク(GNN)の一般化能力について検討する。
埋め込み多様体上の無作為なサンプル点の有限集合からなる幾何学グラフ上のGNNについて、位相情報をキャプチャした。
我々は、このGNNの最適経験リスクと最適統計リスクの間の一般化ギャップを証明し、これは、多様体からサンプリングされた点の数で減少し、基礎となる多様体の次元で増加する。
この一般化ギャップは、サンプリングされた点の集合上のグラフ上で訓練されたGNNが、同じ基礎多様体から構築された他の見えないグラフを処理するために利用されることを保証している。
最も重要な観察は、前の結果のようにグラフのサイズに制限されるのではなく、1つの大きなグラフで一般化能力を実現することができることである。
一般化ギャップは、サンプルグラフ上のGNNの非漸近収束結果に基づいて、基礎となる多様体ニューラルネットワーク(MNN)に導出される。
我々は、ArxivデータセットとCoraデータセットの両方の実験により、この理論的結果を検証する。
関連論文リスト
- Generalization, Expressivity, and Universality of Graph Neural Networks on Attributed Graphs [33.266521866968304]
ノード属性を持つ属性グラフ上でのグラフニューラルネットワーク(GNN)の普遍性と一般化を解析する。
我々は、GNNに対する普遍近似定理と、属性グラフの任意のデータ分布上のGNNの有界一般化を証明した。
我々の研究は、属性のないグラフのみの導出理論、GNNが連続だが分離パワーのない導出コンパクトなメトリクス、GNNが連続かつ分離ポイントである導出指標を拡張・統合する。
論文 参考訳(メタデータ) (2024-11-08T10:34:24Z) - Graph neural networks and non-commuting operators [4.912318087940015]
我々は,グラフトン・タプルニューラルネットワークの極限理論を開発し,それを普遍的な伝達可能性定理の証明に利用する。
我々の理論的結果は、GNNのよく知られた移動可能性定理を、複数の同時グラフの場合にまで拡張する。
得られたモデルの安定性を確実に実施する訓練手順を導出する。
論文 参考訳(メタデータ) (2024-11-06T21:17:14Z) - Generalization of Graph Neural Networks is Robust to Model Mismatch [84.01980526069075]
グラフニューラルネットワーク(GNN)は、その一般化能力によってサポートされている様々なタスクにおいて、その効果を実証している。
本稿では,多様体モデルから生成される幾何グラフで動作するGNNについて検討する。
本稿では,そのようなモデルミスマッチの存在下でのGNN一般化の堅牢性を明らかにする。
論文 参考訳(メタデータ) (2024-08-25T16:00:44Z) - A Manifold Perspective on the Statistical Generalization of Graph Neural Networks [84.01980526069075]
我々は、スペクトル領域の多様体からサンプリングされたグラフ上のGNNの統計的一般化理論を確立するために多様体の視点を取る。
我々はGNNの一般化境界が対数スケールのグラフのサイズとともに線形に減少し、フィルタ関数のスペクトル連続定数とともに線形的に増加することを証明した。
論文 参考訳(メタデータ) (2024-06-07T19:25:02Z) - Learning to Reweight for Graph Neural Network [63.978102332612906]
グラフニューラルネットワーク(GNN)は、グラフタスクに対して有望な結果を示す。
既存のGNNの一般化能力は、テストとトレーニンググラフデータの間に分散シフトが存在する場合に低下する。
本稿では,分布外一般化能力を大幅に向上させる非線形グラフデコリレーション法を提案する。
論文 参考訳(メタデータ) (2023-12-19T12:25:10Z) - Geometric Graph Filters and Neural Networks: Limit Properties and
Discriminability Trade-offs [122.06927400759021]
本稿では,グラフニューラルネットワーク (GNN) と多様体ニューラルネットワーク (MNN) の関係について検討する。
これらのグラフ上の畳み込みフィルタとニューラルネットワークが連続多様体上の畳み込みフィルタとニューラルネットワークに収束することを示す。
論文 参考訳(メタデータ) (2023-05-29T08:27:17Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
我々は、同種GNNが不均一グラフを扱うのに十分な能力を持つように、シンプルで効率的なフレームワークを提案する。
具体的には、エッジ型関係と自己ループ接続の重要性を埋め込むために、関係1つのパラメータのみを使用する関係埋め込みベースのグラフニューラルネットワーク(RE-GNN)を提案する。
論文 参考訳(メタデータ) (2022-09-23T05:24:18Z) - Stability and Generalization Capabilities of Message Passing Graph
Neural Networks [4.691259009382681]
グラフ分類におけるMPNNの一般化能力について検討する。
経験的損失と統計的損失の間の一般化ギャップに非漸近的境界を導出する。
これは、グラフに適用されたMPNNが、グラフが識別する幾何学的モデルに適用されたMPNNを近似することを示すことで証明される。
論文 参考訳(メタデータ) (2022-02-01T18:37:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。