Dual-rail encoding with superconducting cavities
- URL: http://arxiv.org/abs/2212.12077v2
- Date: Tue, 17 Oct 2023 01:39:05 GMT
- Title: Dual-rail encoding with superconducting cavities
- Authors: James D. Teoh, Patrick Winkel, Harshvardhan K. Babla, Benjamin J.
Chapman, Jahan Claes, Stijn J. de Graaf, John W.O. Garmon, William D. Kalfus,
Yao Lu, Aniket Maiti, Kaavya Sahay, Neel Thakur, Takahiro Tsunoda, Sophia H.
Xue, Luigi Frunzio, Steven M. Girvin, Shruti Puri, and Robert J. Schoelkopf
- Abstract summary: We introduce the circuit-Quantum Electrodynamics (QED) dual-rail qubit in which our physical qubit is encoded in the single-photon subspace of two superconducting microwave cavities.
We describe how to perform a gate-based set of universal operations that includes state preparation, logical readout, and parametrizable single and two-qubit gates.
- Score: 2.003418126964701
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The design of quantum hardware that reduces and mitigates errors is essential
for practical quantum error correction (QEC) and useful quantum computation. To
this end, we introduce the circuit-Quantum Electrodynamics (QED) dual-rail
qubit in which our physical qubit is encoded in the single-photon subspace of
two superconducting microwave cavities. The dominant photon loss errors can be
detected and converted into erasure errors, which are in general much easier to
correct. In contrast to linear optics, a circuit-QED implementation of the
dual-rail code offers unique capabilities. Using just one additional transmon
ancilla per dual-rail qubit, we describe how to perform a gate-based set of
universal operations that includes state preparation, logical readout, and
parametrizable single and two-qubit gates. Moreover, first-order hardware
errors in the cavities and the transmon can be detected and converted to
erasure errors in all operations, leaving background Pauli errors that are
orders of magnitude smaller. Hence, the dual-rail cavity qubit exhibits a
favorable hierarchy of error rates and is expected to perform well below the
relevant QEC thresholds with today's coherence times.
Related papers
- Transversal CNOT gate with multi-cycle error correction [1.7359033750147501]
A scalable and programmable quantum computer holds the potential to solve computationally intensive tasks that computers cannot accomplish within a reasonable time frame, achieving quantum advantage.
The vulnerability of the current generation of quantum processors to errors poses a significant challenge towards executing complex and deep quantum circuits required for practical problems.
Our work establishes the feasibility of employing logical CNOT gates alongside error detection on a superconductor-based processor using current generation quantum hardware.
arXiv Detail & Related papers (2024-06-18T04:50:15Z) - Erasure detection of a dual-rail qubit encoded in a double-post
superconducting cavity [1.8484713576684788]
We implement a dual-rail qubit encoded in a compact, double-post superconducting cavity.
We measure an erasure rate of 3.981 +/- 0.003 (ms)-1 and a residual dephasing error rate up to 0.17 (ms)-1 within the codespace.
arXiv Detail & Related papers (2023-11-08T01:36:51Z) - Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
leakage out of the computational subspace arising from the multi-level structure of qubit implementations.
We present a resource-efficient universal leakage reduction unit for superconducting qubits using parametric flux modulation.
We demonstrate that using the leakage reduction unit in repeated weight-two stabilizer measurements reduces the total number of detected errors in a scalable fashion.
arXiv Detail & Related papers (2023-09-13T16:21:32Z) - Experimental realization of deterministic and selective photon addition
in a bosonic mode assisted by an ancillary qubit [50.591267188664666]
Bosonic quantum error correcting codes are primarily designed to protect against single-photon loss.
Error correction requires a recovery operation that maps the error states -- which have opposite parity -- back onto the code states.
Here, we realize a collection of photon-number-selective, simultaneous photon addition operations on a bosonic mode.
arXiv Detail & Related papers (2022-12-22T23:32:21Z) - Software mitigation of coherent two-qubit gate errors [55.878249096379804]
Two-qubit gates are important components of quantum computing.
But unwanted interactions between qubits (so-called parasitic gates) can degrade the performance of quantum applications.
We present two software methods to mitigate parasitic two-qubit gate errors.
arXiv Detail & Related papers (2021-11-08T17:37:27Z) - Quantum Circuit Engineering for Correcting Coherent Noise [1.0965065178451106]
Crosstalk and several sources of operational interference are invisible when qubit or a gate is calibrated or benchmarked in isolation.
Unwanted Z-Z coupling on superconducting cross-resonance CNOT gates, is a commonly occurring unitary crosstalk noise.
Experiments aggressively deploy forced commutation of CNOT gates to obtain low noise state-preparation circuits.
arXiv Detail & Related papers (2021-09-08T10:33:18Z) - Crosstalk Suppression for Fault-tolerant Quantum Error Correction with
Trapped Ions [62.997667081978825]
We present a study of crosstalk errors in a quantum-computing architecture based on a single string of ions confined by a radio-frequency trap, and manipulated by individually-addressed laser beams.
This type of errors affects spectator qubits that, ideally, should remain unaltered during the application of single- and two-qubit quantum gates addressed at a different set of active qubits.
We microscopically model crosstalk errors from first principles and present a detailed study showing the importance of using a coherent vs incoherent error modelling and, moreover, discuss strategies to actively suppress this crosstalk at the gate level.
arXiv Detail & Related papers (2020-12-21T14:20:40Z) - Optical demonstration of quantum fault-tolerant threshold [2.6098148548199047]
A major challenge in practical quantum computation is the ineludible errors caused by the interaction of quantum systems with their environment.
Fault-tolerant schemes, in which logical qubits are encoded by several physical qubits, enable correct output of logical qubits under the presence of errors.
Here, we experimentally demonstrate the existence of the threshold in a special fault-tolerant protocol.
arXiv Detail & Related papers (2020-12-16T13:23:29Z) - Deterministic correction of qubit loss [48.43720700248091]
Loss of qubits poses one of the fundamental obstacles towards large-scale and fault-tolerant quantum information processors.
We experimentally demonstrate the implementation of a full cycle of qubit loss detection and correction on a minimal instance of a topological surface code.
arXiv Detail & Related papers (2020-02-21T19:48:53Z) - Hardware-Encoding Grid States in a Non-Reciprocal Superconducting
Circuit [62.997667081978825]
We present a circuit design composed of a non-reciprocal device and Josephson junctions whose ground space is doubly degenerate and the ground states are approximate codewords of the Gottesman-Kitaev-Preskill (GKP) code.
We find that the circuit is naturally protected against the common noise channels in superconducting circuits, such as charge and flux noise, implying that it can be used for passive quantum error correction.
arXiv Detail & Related papers (2020-02-18T16:45:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.