論文の概要: Towards Scalable Physically Consistent Neural Networks: an Application
to Data-driven Multi-zone Thermal Building Models
- arxiv url: http://arxiv.org/abs/2212.12380v1
- Date: Fri, 23 Dec 2022 14:53:09 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-26 16:25:30.262385
- Title: Towards Scalable Physically Consistent Neural Networks: an Application
to Data-driven Multi-zone Thermal Building Models
- Title(参考訳): スケーラブルな物理的一貫性のあるニューラルネットワークに向けて:データ駆動型マルチゾーンサーマルビルディングモデルへの応用
- Authors: Loris Di Natale, Bratislav Svetozarevic, Philipp Heer, and Colin Neil
Jones
- Abstract要約: 物理的に一貫性のあるニューラルネットワーク(PCNN)が最近開発された。
そこで本研究では,PCNNの温度特性をモデル化し,従来のグレーボックス法とブラックボックス法とを徹底的に比較する手法を提案する。
PCNNは、制約された構造にもかかわらず、最先端の精度を達成し、古典的なNNベースモデルよりも優れていることが示されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With more and more data being collected, data-driven modeling methods have
been gaining in popularity in recent years. While physically sound, classical
gray-box models are often cumbersome to identify and scale, and their accuracy
might be hindered by their limited expressiveness. On the other hand, classical
black-box methods, typically relying on Neural Networks (NNs) nowadays, often
achieve impressive performance, even at scale, by deriving statistical patterns
from data. However, they remain completely oblivious to the underlying physical
laws, which may lead to potentially catastrophic failures if decisions for
real-world physical systems are based on them. Physically Consistent Neural
Networks (PCNNs) were recently developed to address these aforementioned
issues, ensuring physical consistency while still leveraging NNs to attain
state-of-the-art accuracy.
In this work, we scale PCNNs to model building temperature dynamics and
propose a thorough comparison with classical gray-box and black-box methods.
More precisely, we design three distinct PCNN extensions, thereby exemplifying
the modularity and flexibility of the architecture, and formally prove their
physical consistency. In the presented case study, PCNNs are shown to achieve
state-of-the-art accuracy, even outperforming classical NN-based models despite
their constrained structure. Our investigations furthermore provide a clear
illustration of NNs achieving seemingly good performance while remaining
completely physics-agnostic, which can be misleading in practice. While this
performance comes at the cost of computational complexity, PCNNs on the other
hand show accuracy improvements of 17-35% compared to all other physically
consistent methods, paving the way for scalable physically consistent models
with state-of-the-art performance.
- Abstract(参考訳): 収集されるデータが増えるにつれて、データ駆動モデリングの手法が近年人気が高まっている。
物理的に健全であるが、古典的なグレーボックスモデルはしばしば識別とスケールが困難であり、その正確さは表現力の制限によって妨げられる可能性がある。
一方で、現在ではニューラルネットワーク(nns)に依存する古典的なブラックボックス法は、データから統計的パターンを導出することで、大規模でも印象的なパフォーマンスを達成していることが多い。
しかし、それらは基礎となる物理法則に完全に従わないままであり、現実世界の物理システムに対する決定がそれらに基づく場合、破滅的な失敗につながる可能性がある。
物理的に一貫性のあるニューラルネットワーク(PCNN)は最近、前述の問題に対処するために開発された。
そこで本研究では,PCNNを用いて建築温度動態をモデル化し,従来のグレーボックス法とブラックボックス法とを徹底的に比較する。
より正確には、3つの異なるpcnn拡張を設計し、アーキテクチャのモジュラリティと柔軟性を例示し、その物理的一貫性を正式に証明します。
実例では,PCNNは最先端の精度を達成でき,制約構造にもかかわらず従来のNNモデルよりも優れていた。
さらに、我々の調査は、完全に物理に依存しないまま、NNが優れたパフォーマンスを達成していることを示す明確なイラストを提供している。
この性能は計算複雑性のコストがかかるが、pcnnは他の物理的に一貫性のある手法と比較して17-35%の精度向上を示し、最先端の性能を持つスケーラブルな物理的一貫性モデルへの道を開く。
関連論文リスト
- PhyMPGN: Physics-encoded Message Passing Graph Network for spatiotemporal PDE systems [31.006807854698376]
我々は物理符号化されたメッセージパッシンググラフネットワーク(PhyMPGN)という新しいグラフ学習手法を提案する。
我々は,GNNを数値積分器に組み込んで,与えられたPDEシステムに対する時間的時間的ダイナミクスの時間的行進を近似する。
PhyMPGNは、粗い非構造メッシュ上での様々なタイプの時間的ダイナミクスを正確に予測することができる。
論文 参考訳(メタデータ) (2024-10-02T08:54:18Z) - Physics-Informed Neural Networks with Hard Linear Equality Constraints [9.101849365688905]
本研究は,線形等式制約を厳格に保証する物理インフォームドニューラルネットワークKKT-hPINNを提案する。
溶融タンク炉ユニット, 抽出蒸留サブシステム, 化学プラントのアスペンモデル実験により, このモデルが予測精度をさらに高めることを示した。
論文 参考訳(メタデータ) (2024-02-11T17:40:26Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - Multi-Objective Physics-Guided Recurrent Neural Networks for Identifying
Non-Autonomous Dynamical Systems [0.0]
制御対象の非自律系をモデル化するための物理誘導型ハイブリッド手法を提案する。
これはリカレントニューラルネットワークによって拡張され、洗練された多目的戦略を使用してトレーニングされる。
実データを用いた実験により,物理モデルと比較して精度が大幅に向上した。
論文 参考訳(メタデータ) (2022-04-27T14:33:02Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
トレーニングセットとその構造が長期予測の品質に与える影響を考察する。
トレーニングセットのインフォームドデザインは,システムの不変性と基盤となるアトラクションの構造に基づいて,結果のモデルを大幅に改善することを示す。
論文 参考訳(メタデータ) (2021-12-15T20:09:20Z) - Physically Consistent Neural Networks for building thermal modeling:
theory and analysis [0.13499500088995461]
我々はPhysically Consistent NN(PCNN)と呼ばれる新しい物理インフォームNNアーキテクチャを提案する。
PCNNは過去の運用データのみを必要とし、従来のNNと並行して動作するリニアモジュールの事前知識を含むエンジニアリングオーバーヘッドは不要である。
ケーススタディでは,PCNNが古典物理学に基づく抵抗容量モデルよりも50%以上の精度を達成している。
論文 参考訳(メタデータ) (2021-12-06T18:12:50Z) - Stabilizing Equilibrium Models by Jacobian Regularization [151.78151873928027]
ディープ均衡ネットワーク(Deep equilibrium Network, DEQs)は、単一非線形層の固定点を見つけるために従来の深さを推定する新しいモデルのクラスである。
本稿では、平衡モデルの学習を安定させるために、固定点更新方程式のヤコビアンを明示的に正規化するDECモデルの正規化スキームを提案する。
この正規化は計算コストを最小限に抑え、前方と後方の両方の固定点収束を著しく安定化させ、高次元の現実的な領域に順応することを示した。
論文 参考訳(メタデータ) (2021-06-28T00:14:11Z) - Post-mortem on a deep learning contest: a Simpson's paradox and the
complementary roles of scale metrics versus shape metrics [61.49826776409194]
我々は、ニューラルネットワーク(NN)モデルの一般化精度を予測するために、コンテストで公に利用可能にされたモデルのコーパスを分析する。
メトリクスが全体としてよく機能するが、データのサブパーティションではあまり機能しない。
本稿では,データに依存しない2つの新しい形状指標と,一連のNNのテスト精度の傾向を予測できるデータ依存指標を提案する。
論文 参考訳(メタデータ) (2021-06-01T19:19:49Z) - ForceNet: A Graph Neural Network for Large-Scale Quantum Calculations [86.41674945012369]
スケーラブルで表現力のあるグラフニューラルネットワークモデルであるForceNetを開発し、原子力を近似します。
提案したForceNetは、最先端の物理ベースのGNNよりも正確に原子力を予測することができる。
論文 参考訳(メタデータ) (2021-03-02T03:09:06Z) - Modeling System Dynamics with Physics-Informed Neural Networks Based on
Lagrangian Mechanics [3.214927790437842]
第一原則の手法は高いバイアスに悩まされるが、データ駆動モデリングは高いばらつきを持つ傾向がある。
本稿では,2つのモデリング手法を組み合わせて上記の問題を解くハイブリッドモデルであるPINODEについて述べる。
本研究の目的は,機械系のモデルベース制御とシステム同定である。
論文 参考訳(メタデータ) (2020-05-29T15:10:43Z) - Neural Additive Models: Interpretable Machine Learning with Neural Nets [77.66871378302774]
ディープニューラルネットワーク(DNN)は、さまざまなタスクにおいて優れたパフォーマンスを達成した強力なブラックボックス予測器である。
本稿では、DNNの表現性と一般化した加法モデルの固有知性を組み合わせたニューラル付加モデル(NAM)を提案する。
NAMは、ニューラルネットワークの線形結合を学び、それぞれが単一の入力機能に付随する。
論文 参考訳(メタデータ) (2020-04-29T01:28:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。