論文の概要: Multi-Objective Physics-Guided Recurrent Neural Networks for Identifying
Non-Autonomous Dynamical Systems
- arxiv url: http://arxiv.org/abs/2204.12972v1
- Date: Wed, 27 Apr 2022 14:33:02 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-28 14:44:20.012949
- Title: Multi-Objective Physics-Guided Recurrent Neural Networks for Identifying
Non-Autonomous Dynamical Systems
- Title(参考訳): 非自律力学系同定のための多目的物理誘導リカレントニューラルネットワーク
- Authors: Oliver Sch\"on, Ricarda-Samantha G\"otte, Julia Timmermann
- Abstract要約: 制御対象の非自律系をモデル化するための物理誘導型ハイブリッド手法を提案する。
これはリカレントニューラルネットワークによって拡張され、洗練された多目的戦略を使用してトレーニングされる。
実データを用いた実験により,物理モデルと比較して精度が大幅に向上した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: While trade-offs between modeling effort and model accuracy remain a major
concern with system identification, resorting to data-driven methods often
leads to a complete disregard for physical plausibility. To address this issue,
we propose a physics-guided hybrid approach for modeling non-autonomous systems
under control. Starting from a traditional physics-based model, this is
extended by a recurrent neural network and trained using a sophisticated
multi-objective strategy yielding physically plausible models. While purely
data-driven methods fail to produce satisfying results, experiments conducted
on real data reveal substantial accuracy improvements by our approach compared
to a physics-based model.
- Abstract(参考訳): モデリングの労力とモデルの正確性の間のトレードオフは、システム識別において依然として大きな関心事であるが、データ駆動型メソッドへの依存は、物理的実用性を完全に無視する結果となることが多い。
この問題に対処するために、制御下の非自律システムモデリングのための物理誘導ハイブリッドアプローチを提案する。
従来の物理モデルから始まり、リカレントニューラルネットワークによって拡張され、物理的に妥当なモデルを生成する洗練された多目的戦略を用いてトレーニングされる。
純粋にデータ駆動方式では満足な結果が得られないが,実データを用いた実験により,物理モデルと比較して精度が大幅に向上した。
関連論文リスト
- MINN: Learning the dynamics of differential-algebraic equations and
application to battery modeling [3.900623554490941]
我々は、モデル統合ニューラルネットワーク(MINN)を生成するための新しいアーキテクチャを提案する。
MINNは、システムの物理に基づく力学の学習レベルとの統合を可能にする。
提案したニューラルネットワークアーキテクチャを用いてリチウムイオン電池の電気化学的ダイナミクスをモデル化する。
論文 参考訳(メタデータ) (2023-04-27T09:11:40Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
クオーロタのシステムダイナミクスを正確にモデル化することは、アジャイル、安全、安定したナビゲーションを保証する上で非常に重要です。
本稿では,ロボットの経験から,四重項系の力学を純粋に学習するための新しい物理インスパイアされた時間畳み込みネットワーク(PI-TCN)を提案する。
提案手法は,スパース時間的畳み込みと高密度フィードフォワード接続の表現力を組み合わせて,正確なシステム予測を行う。
論文 参考訳(メタデータ) (2022-06-07T13:51:35Z) - Gradient-Based Trajectory Optimization With Learned Dynamics [80.41791191022139]
データからシステムの微分可能なダイナミクスモデルを学習するために、機械学習技術を使用します。
ニューラルネットワークは、大規模な時間的地平線に対して、非常に非線形な振る舞いを正確にモデル化できることが示される。
ハードウェア実験において、学習したモデルがSpotとRadio- controlled (RC)の両方の複雑な力学を表現できることを実証した。
論文 参考訳(メタデータ) (2022-04-09T22:07:34Z) - Learning continuous models for continuous physics [94.42705784823997]
本研究では,科学技術応用のための機械学習モデルを検証する数値解析理論に基づくテストを開発する。
本研究は,従来のMLトレーニング/テスト手法と一体化して,科学・工学分野におけるモデルの検証を行う方法である。
論文 参考訳(メタデータ) (2022-02-17T07:56:46Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
トレーニングセットとその構造が長期予測の品質に与える影響を考察する。
トレーニングセットのインフォームドデザインは,システムの不変性と基盤となるアトラクションの構造に基づいて,結果のモデルを大幅に改善することを示す。
論文 参考訳(メタデータ) (2021-12-15T20:09:20Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
データ駆動モデリングは、真のシステムの観測からシステムの力学の近似を学ぼうとする代替パラダイムである。
本稿では,ニューラルネットワークを用いた動的システムのモデル構築方法について検討する。
基礎的な概要に加えて、関連する文献を概説し、このモデリングパラダイムが克服すべき数値シミュレーションから最も重要な課題を概説する。
論文 参考訳(メタデータ) (2021-11-02T10:51:42Z) - Physics-guided Deep Markov Models for Learning Nonlinear Dynamical
Systems with Uncertainty [6.151348127802708]
我々は物理誘導型Deep Markov Model(PgDMM)という物理誘導型フレームワークを提案する。
提案手法は,動的システムの駆動物理を維持しながら,ディープラーニングの表現力を利用する。
論文 参考訳(メタデータ) (2021-10-16T16:35:12Z) - Hard Encoding of Physics for Learning Spatiotemporal Dynamics [8.546520029145853]
既知の物理知識を強制的にエンコードして,データ駆動的な学習を容易にするディープラーニングアーキテクチャを提案する。
物理学の強制符号化メカニズムは、ペナルティに基づく物理学による学習と根本的に異なるが、ネットワークが与えられた物理学に厳密に従うことを保証する。
論文 参考訳(メタデータ) (2021-05-02T21:40:39Z) - Modeling System Dynamics with Physics-Informed Neural Networks Based on
Lagrangian Mechanics [3.214927790437842]
第一原則の手法は高いバイアスに悩まされるが、データ駆動モデリングは高いばらつきを持つ傾向がある。
本稿では,2つのモデリング手法を組み合わせて上記の問題を解くハイブリッドモデルであるPINODEについて述べる。
本研究の目的は,機械系のモデルベース制御とシステム同定である。
論文 参考訳(メタデータ) (2020-05-29T15:10:43Z) - Physics-based polynomial neural networks for one-shot learning of
dynamical systems from one or a few samples [0.0]
本論文は, 単純な振り子と世界最大規模のX線源の双方について, 実測結果について述べる。
提案手法により, ノイズ, 制限, 部分的な観測から複雑な物理を復元することができることが実証された。
論文 参考訳(メタデータ) (2020-05-24T09:27:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。