An active learning method for solving competitive multi-agent decision-making and control problems
- URL: http://arxiv.org/abs/2212.12561v5
- Date: Mon, 07 Oct 2024 10:52:47 GMT
- Title: An active learning method for solving competitive multi-agent decision-making and control problems
- Authors: Filippo Fabiani, Alberto Bemporad,
- Abstract summary: We introduce a novel active-learning scheme to identify a stationary action profile for a population of competitive agents.
We show that the proposed learning-based approach can be applied to typical multi-agent control and decision-making problems.
- Score: 1.2430809884830318
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To identify a stationary action profile for a population of competitive agents, each executing private strategies, we introduce a novel active-learning scheme where a centralized external observer (or entity) can probe the agents' reactions and recursively update simple local parametric estimates of the action-reaction mappings. Under very general working assumptions (not even assuming that a stationary profile exists), sufficient conditions are established to assess the asymptotic properties of the proposed active learning methodology so that, if the parameters characterizing the action-reaction mappings converge, a stationary action profile is achieved. Such conditions hence act also as certificates for the existence of such a profile. Extensive numerical simulations involving typical competitive multi-agent control and decision-making problems illustrate the practical effectiveness of the proposed learning-based approach.
Related papers
- Stochastic Encodings for Active Feature Acquisition [100.47043816019888]
Active Feature Acquisition is an instance-wise, sequential decision making problem.<n>The aim is to dynamically select which feature to measure based on current observations, independently for each test instance.<n>Common approaches either use Reinforcement Learning, which experiences training difficulties, or greedily maximize the conditional mutual information of the label and unobserved features, which makes myopic.<n>We introduce a latent variable model, trained in a supervised manner. Acquisitions are made by reasoning about the features across many possible unobserved realizations in a latent space.
arXiv Detail & Related papers (2025-08-03T23:48:46Z) - Active Test-time Vision-Language Navigation [60.69722522420299]
ATENA is a test-time active learning framework that enables a practical human-robot interaction via episodic feedback on uncertain navigation outcomes.<n>In particular, ATENA learns to increase certainty in successful episodes and decrease it in failed ones, improving uncertainty calibration.<n>In addition, we propose a self-active learning strategy that enables an agent to evaluate its navigation outcomes based on confident predictions.
arXiv Detail & Related papers (2025-06-07T02:24:44Z) - Model-free Methods for Event History Analysis and Efficient Adjustment (PhD Thesis) [55.2480439325792]
This thesis is a series of independent contributions to statistics unified by a model-free perspective.
The first chapter elaborates on how a model-free perspective can be used to formulate flexible methods that leverage prediction techniques from machine learning.
The second chapter studies the concept of local independence, which describes whether the evolution of one process is directly influenced by another.
arXiv Detail & Related papers (2025-02-11T19:24:09Z) - Exogenous Matching: Learning Good Proposals for Tractable Counterfactual Estimation [1.9662978733004601]
We propose an importance sampling method for tractable and efficient estimation of counterfactual expressions.
By minimizing a common upper bound of counterfactual estimators, we transform the variance minimization problem into a conditional distribution learning problem.
We validate the theoretical results through experiments under various types and settings of Structural Causal Models (SCMs) and demonstrate the outperformance on counterfactual estimation tasks.
arXiv Detail & Related papers (2024-10-17T03:08:28Z) - Uniting contrastive and generative learning for event sequences models [51.547576949425604]
This study investigates the integration of two self-supervised learning techniques - instance-wise contrastive learning and a generative approach based on restoring masked events in latent space.
Experiments conducted on several public datasets, focusing on sequence classification and next-event type prediction, show that the integrated method achieves superior performance compared to individual approaches.
arXiv Detail & Related papers (2024-08-19T13:47:17Z) - Generative Modelling of Stochastic Actions with Arbitrary Constraints in
Reinforcement Learning [25.342811509665097]
Many problems in Reinforcement Learning (RL) seek an optimal policy with large discrete multidimensional yet unordered action spaces.
A challenge in this setting is that the underlying action space is categorical (discrete and unordered) and large.
In this work, we address these challenges by applying a (state) conditional normalizing flow to compactly represent the policy.
arXiv Detail & Related papers (2023-11-26T15:57:20Z) - Safe Multi-agent Learning via Trapping Regions [89.24858306636816]
We apply the concept of trapping regions, known from qualitative theory of dynamical systems, to create safety sets in the joint strategy space for decentralized learning.
We propose a binary partitioning algorithm for verification that candidate sets form trapping regions in systems with known learning dynamics, and a sampling algorithm for scenarios where learning dynamics are not known.
arXiv Detail & Related papers (2023-02-27T14:47:52Z) - Offline Policy Optimization with Eligible Actions [34.4530766779594]
offline policy optimization could have a large impact on many real-world decision-making problems.
Importance sampling and its variants are a commonly used type of estimator in offline policy evaluation.
We propose an algorithm to avoid this overfitting through a new per-state-neighborhood normalization constraint.
arXiv Detail & Related papers (2022-07-01T19:18:15Z) - Reinforcement Learning With Sparse-Executing Actions via Sparsity Regularization [15.945378631406024]
Reinforcement learning (RL) has demonstrated impressive performance in decision-making tasks like embodied control, autonomous driving and financial trading.
In many decision-making tasks, the agents often encounter the problem of executing actions under limited budgets.
This paper formalizes the problem as a Sparse Action Markov Decision Process (SA-MDP), in which specific actions in the action space can only be executed for a limited time.
We propose a policy optimization algorithm, Action Sparsity REgularization (ASRE), which adaptively handles each action with a distinct preference.
arXiv Detail & Related papers (2021-05-18T16:50:42Z) - Distributed Bayesian Online Learning for Cooperative Manipulation [9.582645137247667]
We propose a novel distributed learning framework for the exemplary task of cooperative manipulation using Bayesian principles.
Using only local state information each agent obtains an estimate of the object dynamics and grasp kinematics.
Each estimate of the object dynamics and grasp kinematics is accompanied by a measure of uncertainty, which allows to guarantee a bounded prediction error with high probability.
arXiv Detail & Related papers (2021-04-09T13:03:09Z) - Efficient Empowerment Estimation for Unsupervised Stabilization [75.32013242448151]
empowerment principle enables unsupervised stabilization of dynamical systems at upright positions.
We propose an alternative solution based on a trainable representation of a dynamical system as a Gaussian channel.
We show that our method has a lower sample complexity, is more stable in training, possesses the essential properties of the empowerment function, and allows estimation of empowerment from images.
arXiv Detail & Related papers (2020-07-14T21:10:16Z) - A One-step Approach to Covariate Shift Adaptation [82.01909503235385]
A default assumption in many machine learning scenarios is that the training and test samples are drawn from the same probability distribution.
We propose a novel one-step approach that jointly learns the predictive model and the associated weights in one optimization.
arXiv Detail & Related papers (2020-07-08T11:35:47Z) - Strictly Batch Imitation Learning by Energy-based Distribution Matching [104.33286163090179]
Consider learning a policy purely on the basis of demonstrated behavior -- that is, with no access to reinforcement signals, no knowledge of transition dynamics, and no further interaction with the environment.
One solution is simply to retrofit existing algorithms for apprenticeship learning to work in the offline setting.
But such an approach leans heavily on off-policy evaluation or offline model estimation, and can be indirect and inefficient.
We argue that a good solution should be able to explicitly parameterize a policy, implicitly learn from rollout dynamics, and operate in an entirely offline fashion.
arXiv Detail & Related papers (2020-06-25T03:27:59Z) - Discrete Action On-Policy Learning with Action-Value Critic [72.20609919995086]
Reinforcement learning (RL) in discrete action space is ubiquitous in real-world applications, but its complexity grows exponentially with the action-space dimension.
We construct a critic to estimate action-value functions, apply it on correlated actions, and combine these critic estimated action values to control the variance of gradient estimation.
These efforts result in a new discrete action on-policy RL algorithm that empirically outperforms related on-policy algorithms relying on variance control techniques.
arXiv Detail & Related papers (2020-02-10T04:23:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.