論文の概要: Quantum advantage for combinatorial optimization problems, Simplified
- arxiv url: http://arxiv.org/abs/2212.12572v1
- Date: Fri, 23 Dec 2022 20:05:10 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-09 05:28:20.160915
- Title: Quantum advantage for combinatorial optimization problems, Simplified
- Title(参考訳): 組合せ最適化問題に対する量子優位性
- Authors: Mario Szegedy
- Abstract要約: 我々は、多くのNP最適化問題に対する近似解法において、フォールトトレラント量子コンピュータは古典的コンピュータよりも最適であることを示した。
しかし、この観察は実際には何も示していない。
- 参考スコア(独自算出の注目度): 2.0305676256390934
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: We observe that fault-tolerant quantum computers have an optimal advantage
over classical computers in approximating solutions to many NP optimization
problems. This observation however gives nothing in practice.
- Abstract(参考訳): 我々は、多くのNP最適化問題に対する近似解法において、フォールトトレラント量子コンピュータは古典的コンピュータよりも最適であることを示した。
しかし、この観察は実際には何も与えない。
関連論文リスト
- Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
変分量子アルゴリズム(VQA)は、最適化と機械学習問題を解決するための有望な量子代替手段として登場した。
本稿では,回路設計が2つの分類問題に対して得られる性能に与える影響を実験的に示す。
また、実量子コンピュータのシミュレーションにおいて、ノイズの存在下で得られた回路の劣化について検討する。
論文 参考訳(メタデータ) (2024-04-17T11:00:12Z) - Randomized Benchmarking of Local Zeroth-Order Optimizers for Variational
Quantum Systems [65.268245109828]
古典学のパフォーマンスを、半ランダム化された一連のタスクで比較する。
量子システムにおける一般に好適な性能とクエリ効率のため、局所ゼロ階数に着目する。
論文 参考訳(メタデータ) (2023-10-14T02:13:26Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
単一画像超解像(SISR)問題を解くために,量子コンピューティングに基づくアルゴリズムを提案する。
提案したAQCアルゴリズムは、SISRの精度を維持しつつ、古典的なアナログよりも向上したスピードアップを実現する。
論文 参考訳(メタデータ) (2023-04-18T11:57:15Z) - Quantum approximate optimization via learning-based adaptive
optimization [5.399532145408153]
量子近似最適化アルゴリズム(QAOA)は、目的最適化問題の解法として設計されている。
その結果,アルゴリズムは速度,精度,効率,安定性の点で従来の近似よりも大幅に優れていた。
この研究はQAOAの全パワーを解き放つのに役立ち、実践的な古典的なタスクにおいて量子的優位性を達成するための道を開く。
論文 参考訳(メタデータ) (2023-03-27T02:14:56Z) - An in-principle super-polynomial quantum advantage for approximating
combinatorial optimization problems via computational learning theory [5.907281242647458]
量子コンピュータは、最適化問題に対する近似解法において、古典的コンピュータよりも高次超多項式的優位性を有することを証明している。
量子アドバンテージのコアは、究極的にはShorの量子アルゴリズムからファクタリングのために借用されている。
論文 参考訳(メタデータ) (2022-12-16T19:01:04Z) - Efficient Use of Quantum Linear System Algorithms in Interior Point
Methods for Linear Optimization [0.0]
線形最適化問題を解くために、非現実的な量子内点法を開発した。
また、量子ソルバの過度な時間なしで、反復リファインメントによって正確な解を得る方法についても論じる。
論文 参考訳(メタデータ) (2022-05-02T21:30:56Z) - A Gauss-Newton based Quantum Algorithm for Combinatorial Optimization [0.0]
最適化問題に対するガウス・ニュートン型量子アルゴリズム(GNQA)を提案するが、最適条件下では、局所的なミニマやプラトーに閉じ込められることなく、最適解の1つに迅速に収束する。
我々のアプローチは、最適解を正確に表すテンソル積状態と、二項変数のすべての組み合わせを含むハミルトニアンに対して適切な関数を用いることによってそれらを緩和する。
そこで,本研究では,GNQAが収束特性と精度の両方において,他の最適化手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-03-25T23:49:31Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
マルチオブジェクト追跡(MOT)は、オブジェクト検出が時間を通して関連付けられているトラッキング・バイ・検出のパラダイムにおいて、最もよくアプローチされる。
これらの最適化問題はNPハードであるため、現在のハードウェア上の小さなインスタンスに対してのみ正確に解決できる。
本手法は,既成整数計画法を用いても,最先端の最適化手法と競合することを示す。
論文 参考訳(メタデータ) (2022-02-17T18:59:20Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
マルチバスグラフ複雑性と非線形活性化関数の2つの革新の恩恵を受ける新しい変分量子アルゴリズムを導入する。
その結果,最適化性能が向上し,有効景観が2つ向上し,測定の進歩が減少した。
論文 参考訳(メタデータ) (2021-06-24T20:16:02Z) - Feedback-based quantum optimization [0.0]
本稿では,量子回路パラメータに対して,量子ビット計測の結果を構成的に割り当てる,量子最適化のためのフィードバックベースの戦略を提案する。
この手法により,量子回路の深さを単調に改善する最適化問題の解が推定されることを示す。
論文 参考訳(メタデータ) (2021-03-15T18:01:03Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
QAOA(Quantum Approximate Optimization Algorithm)のようなハイブリッド量子古典アルゴリズムは、短期量子コンピュータを実用的に活用するための最も奨励的なアプローチの1つである。
このようなアルゴリズムは通常変分形式で実装され、古典的な最適化法と量子機械を組み合わせて最適化問題の優れた解を求める。
本研究では,クロスエントロピー法を用いてランドスケープを形作り,古典的パラメータがより容易により良いパラメータを発見でき,その結果,性能が向上することを示す。
論文 参考訳(メタデータ) (2020-03-11T13:52:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。