Generation of a time-bin Greenberger--Horne--Zeilinger state with an
optical switch
- URL: http://arxiv.org/abs/2304.05683v1
- Date: Wed, 12 Apr 2023 08:11:23 GMT
- Title: Generation of a time-bin Greenberger--Horne--Zeilinger state with an
optical switch
- Authors: Hsin-Pin Lo, Takuya Ikuta, Koji Azuma, Toshimori Honjo, William J.
Munro, and Hiroki Takesue
- Abstract summary: Multipartite entanglement exhibits much richer phenomenon and stronger correlations than in bipartite systems.
Time-bin qubits have a particularly important role to play in quantum communication systems.
We generate a three-photon time-bin Greenberger-Horne-Zeilinger (GHZ) state using a 2 x 2 optical switch.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multipartite entanglement is a critical resource in quantum information
processing that exhibits much richer phenomenon and stronger correlations than
in bipartite systems. This advantage is also reflected in its multi-user
applications. Although many demonstrations have used photonic polarization
qubits, polarization-mode dispersion confines the transmission of photonic
polarization qubits through an optical fiber. Consequently, time-bin qubits
have a particularly important role to play in quantum communication systems.
Here, we generate a three-photon time-bin Greenberger-Horne-Zeilinger (GHZ)
state using a 2 x 2 optical switch as a time-dependent beam splitter to
entangle time-bin Bell states from a spontaneous parametric down-conversion
source and a weak coherent pulse. To characterize the three-photon time-bin GHZ
state, we performed measurement estimation, showed a violation of the Mermin
inequality, and used quantum state tomography to fully reconstruct a density
matrix, which shows a state fidelity exceeding 70%. We expect that our
three-photon time-bin GHZ state can be used for long-distance multi-user
quantum communication.
Related papers
- Multiphoton interference in a single-spatial-mode quantum walk [0.0]
Multiphoton interference is crucial to many photonic quantum technologies.
Here, we implement a quantum walk in a highly stable, low-loss, multiport interferometer with up to 24 ultrafast time bins.
Our results demonstrate that ultrafast time bins are a promising platform to observe large-scale multiphoton interference.
arXiv Detail & Related papers (2024-09-17T18:14:54Z) - Finite Pulse-Time Effects in Long-Baseline Quantum Clock Interferometry [45.73541813564926]
We study the interplay of the quantum center-of-mass $-$ that can become delocalized $-$ together with the internal clock transitions.
We show at the example of a Gaussian laser beam that the proposed quantum-clock interferometers are stable against perturbations from varying optical fields.
arXiv Detail & Related papers (2023-09-25T18:00:03Z) - Non-Gaussian quantum state generation by multi-photon subtraction at the
telecommunication wavelength [0.8013991054257982]
We present the generation of non-Gaussian states on wave packets with a short 8-ps duration in the 1545.32 nm telecommunication wavelength band using photon subtraction up to three photons.
Results can be extended to the generation of more complicated non-Gaussian states and are a key technology in the pursuit of high-speed optical quantum computation.
arXiv Detail & Related papers (2023-01-24T09:13:36Z) - Clock synchronization with pulsed single photon sources [0.0]
Photonic quantum technology requires precise, time-resolved identification of photodetection events.
Here we build on recent advances of using single-photons for time transfer and employ and quantify a fast postprocessing scheme designed to pulsed single-photon sources.
We achieve an average root mean square synchronization jitter of 3.0 ps and a stability comparable to systems with ultra-stable clocks.
arXiv Detail & Related papers (2022-12-23T21:10:25Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Telecom-band Hyperentangled Photon Pairs from a Fiber-based Source [49.06242674127539]
We experimentally demonstrate the generation of telecom-band biphotons hyperentangled in both the polarization and frequency DoFs.
The states produced by our hyperentanglement source can enable protocols such as dense coding and high-dimensional quantum key distribution.
arXiv Detail & Related papers (2021-12-06T21:37:43Z) - Entangling a Hole Spin with a Time-Bin Photon: A Waveguide Approach for
Quantum Dot Sources of Multi-Photon Entanglement [2.248469235112198]
Multi-photon entanglement is attractive for quantum information processing but is challenging to realize experimentally.
In this paper, we demonstrate a route towards a scaleable source of time-bin encoded Greenberger-Horne-Zeilinger and linear cluster states from a solid-state quantum dot embedded in a nanophotonic crystal waveguide.
arXiv Detail & Related papers (2021-11-24T14:43:57Z) - Quantum communication with ultrafast time-bin qubits [0.0]
We experimentally demonstrate the feasibility of picosecond time-bin states of light, known as ultrafast time-bins, for applications in quantum communications.
With the ability to measure time-bin superpositions with excellent phase stability, we enable the use of temporal states in efficient quantum key distribution protocols.
arXiv Detail & Related papers (2021-06-17T22:08:08Z) - Telecom-heralded entanglement between remote multimode solid-state
quantum memories [55.41644538483948]
Future quantum networks will enable the distribution of entanglement between distant locations and allow applications in quantum communication, quantum sensing and distributed quantum computation.
Here we report the demonstration of heralded entanglement between two spatially separated quantum nodes, where the entanglement is stored in multimode solid-state quantum memories.
We also show that the generated entanglement is robust against loss in the heralding path, and demonstrate temporally multiplexed operation, with 62 temporal modes.
arXiv Detail & Related papers (2021-01-13T14:31:54Z) - A Frequency-Multiplexed Coherent Electro-Optic Memory in Rare Earth
Doped Nanoparticles [94.37521840642141]
Quantum memories for light are essential components in quantum technologies like long-distance quantum communication and distributed quantum computing.
Recent studies have shown that long optical and spin coherence lifetimes can be observed in rare earth doped nanoparticles.
We report on coherent light storage in Eu$3+$:Y$$O$_3$ nanoparticles using the Stark Echo Modulation Memory (SEMM) quantum protocol.
arXiv Detail & Related papers (2020-06-17T13:25:54Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.