Quantum storage of entangled photons at telecom wavelengths in a crystal
- URL: http://arxiv.org/abs/2212.12898v2
- Date: Sun, 27 Aug 2023 03:59:57 GMT
- Title: Quantum storage of entangled photons at telecom wavelengths in a crystal
- Authors: Ming-Hao Jiang, Wenyi Xue, Qian He, Yu-Yang An, Xiaodong Zheng,
Wen-Jie Xu, Yu-Bo Xie, Yanqing Lu, Shining Zhu and Xiao-Song Ma
- Abstract summary: We demonstrate the storage and recall of entangled state of two telecom photons generated from an integrated photonic chip.
Results pave the way for realizing quantum networks based on solid-state devices.
- Score: 11.523962992775655
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The quantum internet -- in synergy with the internet that we use today --
promises an enabling platform for next-generation information processing,
including exponentially speed-up distributed computation, secure communication,
and high-precision metrology. The key ingredients for realizing such a global
network are the distribution and storage of quantum entanglement. As
ground-based quantum networks are likely to be based on existing fiber
networks, telecom-wavelength entangled photons and corresponding quantum
memories are of central interest. Recently, $\rm^{167}Er^{3+}$ ions have been
identified as a promising candidate for an efficient, broadband quantum memory
at telecom wavelength. However, to date, no storage of entangled photons, the
crucial step of quantum memory using these promising ions, $\rm^{167}Er^{3+}$,
has been reported. Here, we demonstrate the storage and recall of the entangled
state of two telecom photons generated from an integrated photonic chip based
on a silicon nitride micro-ring resonator. Combining the natural narrow
linewidth of the entangled photons and long storage time of $\rm^{167}Er^{3+}$
ions, we achieve storage time of 1.936 $\mu$s, more than 387 times longer than
in previous works. Successful storage of entanglement in the crystal is
certified by a violation of an entanglement witness with more than 23 standard
deviations (-0.234 $\pm$ 0.010) at 1.936 $\mu$s storage time. These results
pave the way for realizing quantum networks based on solid-state devices.
Related papers
- Spin-photon entanglement of a single Er$^{3+}$ ion in the telecom band [0.27376226833693]
Long-distance quantum communication using quantum repeaters is an enabling technology for secure communication.
As a building block of quantum repeaters, spin-photon entanglement has been demonstrated with both atomic and solid-state qubits.
Here, we demonstrate spin-photon entanglement using a single Er$3+$ ion in a solid-state crystal, integrated into a silicon nanophotonic circuit.
arXiv Detail & Related papers (2024-06-10T17:55:25Z) - Quantum Optical Memory for Entanglement Distribution [52.77024349608834]
Entanglement of quantum states over long distances can empower quantum computing, quantum communications, and quantum sensing.
Over the past two decades, quantum optical memories with high fidelity, high efficiencies, long storage times, and promising multiplexing capabilities have been developed.
arXiv Detail & Related papers (2023-04-19T03:18:51Z) - Deterministic Storage and Retrieval of Telecom Quantum Dot Photons
Interfaced with an Atomic Quantum Memory [0.0]
We store photons from a semiconductor quantum dot in an atomic ensemble quantum memory at telecommunications wavelengths.
The signal-to-noise ratio of the retrieved photons is $18.2pm 0.6$, limited only by detector dark counts.
This demonstration paves the way to quantum technologies that rely on distributed entanglement, and is especially suited for photonic quantum networks.
arXiv Detail & Related papers (2023-03-07T19:00:01Z) - QUICK$^3$ -- Design of a satellite-based quantum light source for
quantum communication and extended physical theory tests in space [73.86330563258117]
Single photon source can enhance secure data rates in satellite-based quantum key distribution scenarios.
payload is being integrated into a 3U CubeSat and scheduled for launch in 2024 into low Earth orbit.
arXiv Detail & Related papers (2023-01-26T15:34:11Z) - Field-deployable Quantum Memory for Quantum Networking [62.72060057360206]
We present a quantum memory engineered to meet real-world deployment and scaling challenges.
The memory technology utilizes a warm rubidium vapor as the storage medium, and operates at room temperature.
We demonstrate performance specifications of high-fidelity retrieval (95%) and low operation error $(10-2)$ at a storage time of 160 $mu s$ for single-photon level quantum memory operations.
arXiv Detail & Related papers (2022-05-26T00:33:13Z) - Remote distribution of non-classical correlations over 1250 modes
between a telecom photon and a $^{171}$Yb$^{3+}$:Y$_2$SiO$_{5}$ crystal [0.0]
Quantum repeaters based on heralded entanglement require quantum nodes that are able to generate multimode quantum correlations.
We demonstrate an atomic frequency comb quantum memory with a time-domain mode capacity of 1250 modes and a bandwidth of 100 MHz.
Building on this experiment should allow distribution of entanglement between remote quantum nodes, with enhanced rates owing to the high multimode capacity.
arXiv Detail & Related papers (2022-05-03T13:27:53Z) - Entanglement between a telecom photon and an on-demand multimode
solid-state quantum memory [52.77024349608834]
We show the first demonstration of entanglement between a telecom photon and a collective spin excitation in a multimode solid-state quantum memory.
We extend the entanglement storage in the quantum memory for up to 47.7$mu$s, which could allow for the distribution of entanglement between quantum nodes separated by distances of up to 10 km.
arXiv Detail & Related papers (2021-06-09T13:59:26Z) - Telecom-heralded entanglement between remote multimode solid-state
quantum memories [55.41644538483948]
Future quantum networks will enable the distribution of entanglement between distant locations and allow applications in quantum communication, quantum sensing and distributed quantum computation.
Here we report the demonstration of heralded entanglement between two spatially separated quantum nodes, where the entanglement is stored in multimode solid-state quantum memories.
We also show that the generated entanglement is robust against loss in the heralding path, and demonstrate temporally multiplexed operation, with 62 temporal modes.
arXiv Detail & Related papers (2021-01-13T14:31:54Z) - A Frequency-Multiplexed Coherent Electro-Optic Memory in Rare Earth
Doped Nanoparticles [94.37521840642141]
Quantum memories for light are essential components in quantum technologies like long-distance quantum communication and distributed quantum computing.
Recent studies have shown that long optical and spin coherence lifetimes can be observed in rare earth doped nanoparticles.
We report on coherent light storage in Eu$3+$:Y$$O$_3$ nanoparticles using the Stark Echo Modulation Memory (SEMM) quantum protocol.
arXiv Detail & Related papers (2020-06-17T13:25:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.