論文の概要: A Quantum Information Theoretic View On A Deep Quantum Neural Network
- arxiv url: http://arxiv.org/abs/2212.12906v1
- Date: Sun, 25 Dec 2022 14:00:49 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-09 05:26:00.193628
- Title: A Quantum Information Theoretic View On A Deep Quantum Neural Network
- Title(参考訳): 深層量子ニューラルネットワークにおける量子情報理論ビュー
- Authors: Beatrix C. Hiesmayr
- Abstract要約: 本稿では,ニューロンの役割を量子ビットで引き継ぎ,重みの役割をユニタリーで果たす,人工深部ニューラルネットワークの量子バージョンについて論じる。
量子情報理論の観点から,2つの例を考察し,その学習について考察する。
- 参考スコア(独自算出の注目度): 0.06091702876917279
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We discuss a quantum version of an artificial deep neural network where the
role of neurons is taken over by qubits and the role of weights is played by
unitaries. The role of the non-linear activation function is taken over by
subsequently tracing out layers (qubits) of the network. We study two examples
and discuss the learning from a quantum information theoretic point of view. In
detail, we show that the lower bound of the Heisenberg uncertainty relations is
defining the change of the gradient descent in the learning process. We raise
the question if the limit by Nature to two non-commuting observables,
quantified in the Heisenberg uncertainty relations, is ruling the optimization
of the quantum deep neural network. We find a negative answer.
- Abstract(参考訳): 本稿では,ニューロンの役割を量子ビットで引き継ぎ,重みの役割をユニタリーで果たす,人工深部ニューラルネットワークの量子バージョンについて論じる。
非線形活性化関数の役割は、ネットワークの層 (qubits) を追跡することで継承される。
量子情報理論の観点から2つの例を考察し,その学習について考察する。
具体的には,ハイゼンベルクの不確かさ関係の下限が,学習過程における勾配降下の変化を規定していることを示す。
我々は、ハイゼンベルクの不確実性関係で定量化されている2つの非可換観測量に対する自然による極限が、量子深部ニューラルネットワークの最適化を決定づけているかどうかを疑問視する。
否定的な答えを見つけます
関連論文リスト
- QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
本稿では,ノード間の局所的なメッセージパッシングをクロスゲート量子演算のシーケンスで学習する量子グラフ畳み込みネットワーク(QuanGCN)を提案する。
現代の量子デバイスから固有のノイズを緩和するために、ノードの接続をスパーズするためにスパース制約を適用します。
我々のQuanGCNは、いくつかのベンチマークグラフデータセットの古典的なアルゴリズムよりも機能的に同等か、さらに優れている。
論文 参考訳(メタデータ) (2022-11-09T21:43:16Z) - Experimental verification of the quantum nature of a neural network [0.0]
システムを量子化する理由と、ニューラルネットワークが量子残基を持つと解釈できる範囲について論じる。
古典的ニューラルネットワークの量子関数規則(マップ)から絡み合いを抽出できる可能性のある実験を提案する。
論文 参考訳(メタデータ) (2022-08-23T06:33:59Z) - Are classical neural networks quantum? [0.0]
ニューラルネットワークは、波動関数の近似として、多くの粒子系の状態空間の探索を改善するために使用されている。
ここでは、システムを量子化する理由と、ニューラルネットワークが量子残基を持つと解釈できる範囲について論じます。
論文 参考訳(メタデータ) (2022-05-31T09:33:51Z) - Parametrized constant-depth quantum neuron [56.51261027148046]
本稿では,カーネルマシンをベースとした量子ニューロン構築フレームワークを提案する。
ここでは、指数的に大きい空間にテンソル積特徴写像を適用するニューロンについて述べる。
パラメトリゼーションにより、提案されたニューロンは、既存のニューロンが適合できない基礎となるパターンを最適に適合させることができることが判明した。
論文 参考訳(メタデータ) (2022-02-25T04:57:41Z) - Quantifying Unknown Entanglement by Neural Networks [1.6629141734354616]
ニューラルネットワークは未知の絡み合いを定量化するために訓練され、ニューラルネットワークの入力特徴は、ターゲットの量子状態を局所的に測定した結果統計データである。
その結果、トレーニングするニューラルネットワークは、未知の量子状態の定量化に非常に優れた性能を持つことがわかった。
論文 参考訳(メタデータ) (2021-04-26T12:50:25Z) - On quantum neural networks [91.3755431537592]
量子ニューラルネットワークの概念は、その最も一般的な関数の観点から定義されるべきである。
我々の推論は、量子力学におけるファインマン経路積分定式化の利用に基づいている。
論文 参考訳(メタデータ) (2021-04-12T18:30:30Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
線形および非線形の層をユニタリ量子ゲートとして表現する方法を示し、量子モデルの基本的な励起を粒子として解釈する。
ニューラルネットワークの研究のための新しい視点と技術を開くことに加えて、量子定式化は光量子コンピューティングに適している。
論文 参考訳(メタデータ) (2021-03-08T17:24:29Z) - Emergent Quantumness in Neural Networks [0.0]
隠れ変数の化学ポテンシャルによって決定される「プランク定数」でSchr"odinger方程式を導出する。
また,機械学習や基礎物理学,進化生物学における研究結果の意義についても考察した。
論文 参考訳(メタデータ) (2020-12-09T14:32:33Z) - Quantum information spreading in a disordered quantum walk [50.591267188664666]
量子ウォークスを用いて量子情報拡散パターンを探索する量子探索プロトコルを設計する。
我々は、異常や古典的輸送を調査するために、コヒーレントな静的および動的障害に焦点を当てる。
以上の結果から,複雑なネットワークで発生する欠陥や摂動の情報を読み取る装置として,量子ウォーク(Quantum Walk)が考えられる。
論文 参考訳(メタデータ) (2020-10-20T20:03:19Z) - Neuromorphic quantum computing [0.0]
我々はニューロモルフィックコンピューティングが量子演算を実行できることを提案する。
ニューラルネットワーク力学のパラメータの変化として量子ゲートを学習できる2量子ビットシステムについて述べる。
論文 参考訳(メタデータ) (2020-05-04T14:46:48Z) - Phase Detection with Neural Networks: Interpreting the Black Box [58.720142291102135]
ニューラルネットワーク(NN)は通常、予測の背後にある推論に対する洞察を妨げます。
本研究では,1次元拡張スピンレスFermi-Hubbardモデルの位相を半充足で予測するために,NNのブラックボックスをいかに影響関数が解き放つかを示す。
論文 参考訳(メタデータ) (2020-04-09T17:45:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。