CrySPAI: A new Crystal Structure Prediction Software Based on Artificial Intelligence
- URL: http://arxiv.org/abs/2501.15838v1
- Date: Mon, 27 Jan 2025 07:53:06 GMT
- Title: CrySPAI: A new Crystal Structure Prediction Software Based on Artificial Intelligence
- Authors: Zongguo Wang, Ziyi Chen, Yang Yuan, Yangang Wang,
- Abstract summary: We present CrySPAI, a crystal structure prediction package developed using artificial intelligence (AI) to predict energetically stable crystal structures of inorganic materials.
The software consists of three key modules, an evolutionary optimization algorithm (EOA) that searches for all possible crystal structure configurations, density functional theory (DFT) that provides the accurate energy values, and a deep neural network (DNN) that learns the relationship between crystal structures and their corresponding energies.
- Score: 18.986318006059566
- License:
- Abstract: Crystal structure predictions based on the combination of first-principles calculations and machine learning have achieved significant success in materials science. However, most of these approaches are limited to predicting specific systems, which hinders their application to unknown or unexplored domains. In this paper, we present CrySPAI, a crystal structure prediction package developed using artificial intelligence (AI) to predict energetically stable crystal structures of inorganic materials given their chemical compositions. The software consists of three key modules, an evolutionary optimization algorithm (EOA) that searches for all possible crystal structure configurations, density functional theory (DFT) that provides the accurate energy values for these structures, and a deep neural network (DNN) that learns the relationship between crystal structures and their corresponding energies. To optimize the process across these modules, a distributed framework is implemented to parallelize tasks, and an automated workflow has been integrated into CrySPAI for seamless execution. This paper reports the development and implementation of AI AI-based CrySPAI Crystal Prediction Software tool and its unique features.
Related papers
- Efficient Symmetry-Aware Materials Generation via Hierarchical Generative Flow Networks [52.13486402193811]
New solid-state materials require rapidly exploring the vast space of crystal structures and locating stable regions.
Existing methods struggle to explore large material spaces and generate diverse samples with desired properties and requirements.
We propose a novel generative model employing a hierarchical exploration strategy to efficiently exploit the symmetry of the materials space to generate crystal structures given desired properties.
arXiv Detail & Related papers (2024-11-06T23:53:34Z) - Generative Hierarchical Materials Search [91.93125016916463]
We propose Generative Hierarchical Materials Search (GenMS) for controllable generation of crystal structures.
GenMS consists of (1) a language model that takes high-level natural language as input and generates intermediate textual information about a crystal.
GenMS additionally uses a graph neural network to predict properties (e.g., formation energy) from the generated crystal structures.
arXiv Detail & Related papers (2024-09-10T17:51:28Z) - Sustainable Diffusion-based Incentive Mechanism for Generative AI-driven Digital Twins in Industrial Cyber-Physical Systems [65.22300383287904]
Industrial Cyber-Physical Systems (ICPSs) are an integral component of modern manufacturing and industries.
By digitizing data throughout product life cycles, Digital Twins (DTs) in ICPSs enable a shift from current industrial infrastructures to intelligent and adaptive infrastructures.
GenAI can drive the construction and update of DTs to improve predictive accuracy and prepare for diverse smart manufacturing.
arXiv Detail & Related papers (2024-08-02T10:47:10Z) - Crystalformer: Infinitely Connected Attention for Periodic Structure Encoding [10.170537065646323]
Predicting physical properties of materials from their crystal structures is a fundamental problem in materials science.
We show that crystal structures are infinitely repeating, periodic arrangements of atoms, whose fully connected attention results in infinitely connected attention.
We propose a simple yet effective Transformer-based encoder architecture for crystal structures called Crystalformer.
arXiv Detail & Related papers (2024-03-18T11:37:42Z) - Latent Conservative Objective Models for Data-Driven Crystal Structure
Prediction [62.36797874900395]
In computational chemistry, crystal structure prediction is an optimization problem.
One approach to tackle this problem involves building simulators based on density functional theory (DFT) followed by running search in simulation.
We show that our approach, dubbed LCOMs (latent conservative objective models), performs comparably to the best current approaches in terms of success rate of structure prediction.
arXiv Detail & Related papers (2023-10-16T04:35:44Z) - Shotgun crystal structure prediction using machine-learned formation energies [3.2563787689949133]
Crystal structures of assembled atoms can be predicted by finding the global or local minima of the energy surface within a broad space of atomic configurations.
Here, we present significant progress toward solving the crystal structure prediction problem.
We performed noniterative, single-shot screening using a large library of virtually created crystal structures with a machine-learning energy predictor.
arXiv Detail & Related papers (2023-05-03T14:46:16Z) - Neural Structure Fields with Application to Crystal Structure
Autoencoders [10.680545976155173]
We propose neural structure fields (NeSF) as an accurate and practical approach for representing crystal structures using neural networks.
NeSF overcomes the tradeoff between spatial resolution and computational complexity and can represent any crystal structure.
We propose an autoencoder of crystal structures that can recover various crystal structures, such as those of perovskite structure materials and cuprate superconductors.
arXiv Detail & Related papers (2022-12-08T16:41:41Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
In this paper we present a unified deployment pipeline and freedom-to-operate approach that supports all requirements while using basic cross-platform tensor framework and script language engines.
This approach however does not supply the needed procedures and pipelines for the actual deployment of machine learning capabilities in real production grade systems.
arXiv Detail & Related papers (2021-12-22T14:45:37Z) - Towards High Performance Relativistic Electronic Structure Modelling:
The EXP-T Program Package [68.8204255655161]
We present a new implementation of the FS-RCC method designed for modern parallel computers.
The performance and scaling features of the implementation are analyzed.
The software developed allows to achieve a completely new level of accuracy for prediction of properties of atoms and molecules containing heavy and superheavy nuclei.
arXiv Detail & Related papers (2020-04-07T20:08:30Z) - CRYSPNet: Crystal Structure Predictions via Neural Network [14.930208990741129]
We present an alternative approach utilizing machine learning for crystal structure prediction.
We developed a tool called Crystal Structure Prediction Network (CRYSPNet) that can predict the Bravais lattice, space group, and lattice parameters of an inorganic material.
It was trained and validated on more than 100,000 entries from the Inorganic Crystal Structure Database.
arXiv Detail & Related papers (2020-03-31T16:05:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.