論文の概要: Artificial Intelligence for Satellite Communication: A Review
- arxiv url: http://arxiv.org/abs/2101.10899v1
- Date: Mon, 25 Jan 2021 13:01:16 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-15 10:59:30.244946
- Title: Artificial Intelligence for Satellite Communication: A Review
- Title(参考訳): 衛星通信における人工知能の展望
- Authors: Fares Fourati, Mohamed-Slim Alouini
- Abstract要約: この研究は、AI、その多様なサブフィールド、そして最先端のアルゴリズムの概要を提供する。
さまざまな衛星通信分野へのAIの適用は、ビームホッピング、アンチジャミング、ネットワークトラフィック予測、チャネルモデリング、テレメトリマイニング、電離圏シンチレーション検出、干渉管理、リモートセンシング、行動モデリング、スペースエアグラウンド統合、エネルギー管理など、優れた可能性を実証しています。
- 参考スコア(独自算出の注目度): 91.3755431537592
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Satellite communication offers the prospect of service continuity over
uncovered and under-covered areas, service ubiquity, and service scalability.
However, several challenges must first be addressed to realize these benefits,
as the resource management, network control, network security, spectrum
management, and energy usage of satellite networks are more challenging than
that of terrestrial networks. Meanwhile, artificial intelligence (AI),
including machine learning, deep learning, and reinforcement learning, has been
steadily growing as a research field and has shown successful results in
diverse applications, including wireless communication. In particular, the
application of AI to a wide variety of satellite communication aspects have
demonstrated excellent potential, including beam-hopping, anti-jamming, network
traffic forecasting, channel modeling, telemetry mining, ionospheric
scintillation detecting, interference managing, remote sensing, behavior
modeling, space-air-ground integrating, and energy managing. This work thus
provides a general overview of AI, its diverse sub-fields, and its
state-of-the-art algorithms. Several challenges facing diverse aspects of
satellite communication systems are then discussed, and their proposed and
potential AI-based solutions are presented. Finally, an outlook of field is
drawn, and future steps are suggested.
- Abstract(参考訳): 衛星通信は、未発見領域や未発見領域に対するサービス継続性、サービスユビキティ、サービスのスケーラビリティを提供する。
しかし、衛星ネットワークの資源管理、ネットワーク制御、ネットワークセキュリティ、スペクトル管理、エネルギー利用が地上ネットワークよりも難しいため、これらの利点を実現するために、まずいくつかの課題に対処しなければならない。
一方、機械学習、ディープラーニング、強化学習などの人工知能(AI)は、研究分野として着実に成長しており、無線通信を含む多様なアプリケーションで成果を発揮しています。
特に、ビームホッピング、アンチジャミング、ネットワークトラフィック予測、チャネルモデリング、テレメトリマイニング、電離圏シンチレーション検出、干渉管理、リモートセンシング、行動モデリング、宇宙-地上統合、エネルギー管理など、さまざまな衛星通信分野へのAIの適用は優れた可能性を実証しています。
この研究は、AI、その多様なサブフィールド、そして最先端のアルゴリズムの概観を提供する。
衛星通信システムの多様な側面に直面するいくつかの課題が議論され、その提案と潜在的なAIベースのソリューションが提示される。
最後に、フィールドの見通しが描かれ、将来のステップが提案される。
- 全文 参考訳へのリンク
関連論文リスト
- A Comprehensive Study on Artificial Intelligence Algorithms to Implement
Safety Using Communication Technologies [1.2710179245406195]
この研究は、異なるコミュニケーション技術を使用するAIベースの安全ソリューションの現状を包括的に把握することを目的としている。
その結果、安全を実装するためにAIとコミュニケーションを最も活用しているのは自動車ドメインであることが示された。
携帯電話以外の通信技術の利用が主流であるが、2020年からは5G技術の展開に伴い、携帯電話通信の利用が急速に増加する傾向が観察されている。
論文 参考訳(メタデータ) (2022-05-17T14:38:38Z) - Bridging the Urban-Rural Connectivity Gap through Intelligent Space,
Air, and Ground Networks [68.8204255655161]
農村部におけるコネクティビティは、通信ネットワークの主な課題の1つである。
我々は、農村部における最新のコネクティビティの取り組みを強調し、地球外ネットワークのソリューションについて議論し、地球外ネットワークの潜在的なメリットについて検討する。
我々は、農村部におけるコネクティビティの課題について議論し、最新のプロジェクトや研究、AIを用いたネットワークの強化について強調する。
論文 参考訳(メタデータ) (2022-02-25T13:40:35Z) - IoT-based Route Recommendation for an Intelligent Waste Management
System [61.04795047897888]
本研究は, 空間制約を考慮したIoT対応廃棄物管理システムにおいて, 経路推薦のためのインテリジェントなアプローチを提案する。
我々のソリューションは、ビンの状態と座標を考慮に入れた複数レベルの意思決定プロセスに基づいている。
論文 参考訳(メタデータ) (2022-01-01T12:36:22Z) - Autonomous Aerial Robot for High-Speed Search and Intercept Applications [86.72321289033562]
高速物体把握のための完全自律飛行ロボットが提案されている。
追加のサブタスクとして、我々のシステムは、表面に近い極にある気球を自律的にピアスすることができる。
我々のアプローチは、挑戦的な国際競争で検証され、優れた結果が得られました。
論文 参考訳(メタデータ) (2021-12-10T11:49:51Z) - Satellite Based Computing Networks with Federated Learning [30.090106801185886]
人工知能(AI)によって強化された第6世代(6G)モバイルシステムである無線通信の新世代が、かなりの研究関心を集めている。
6Gの様々な候補技術の中で、低軌道(LEO)衛星はユビキタス無線アクセスの特徴をアピールしている。
知的適応学習を備えた大規模相互接続デバイスをサポートし,SatComにおける高価なトラフィックを削減するため,LEOベースの衛星通信ネットワークにおけるフェデレーション学習(FL)を提案する。
論文 参考訳(メタデータ) (2021-11-20T13:24:23Z) - Deep Learning Aided Routing for Space-Air-Ground Integrated Networks
Relying on Real Satellite, Flight, and Shipping Data [79.96177511319713]
現在の海上通信は主に単なる送信資源を持つ衛星に依存しており、現代の地上無線ネットワークよりも性能が劣っている。
大陸横断航空輸送の増加に伴い、商業旅客機に依存した航空アドホックネットワークという有望な概念は、空対地およびマルチホップ空対空リンクを介して衛星ベースの海上通信を強化する可能性がある。
低軌道衛星コンステレーション、旅客機、地上基地局、船舶がそれぞれ宇宙、航空、船舶として機能する、ユビキタスな海上通信を支援するための宇宙地上統合ネットワーク(SAGIN)を提案する。
論文 参考訳(メタデータ) (2021-10-28T14:12:10Z) - Pervasive AI for IoT Applications: Resource-efficient Distributed
Artificial Intelligence [45.076180487387575]
人工知能(AI)は、さまざまなモノのインターネット(IoT)アプリケーションやサービスにおいて大きなブレークスルーを目の当たりにした。
これは、感覚データへの容易なアクセスと、リアルタイムデータストリームのゼッタバイト(ZB)を生成する広帯域/ユビキタスデバイスの巨大なスケールによって駆動される。
広範コンピューティングと人工知能の合流により、Pervasive AIはユビキタスIoTシステムの役割を拡大した。
論文 参考訳(メタデータ) (2021-05-04T23:42:06Z) - Deep Reinforcement Learning-Aided RAN Slicing Enforcement for B5G
Latency Sensitive Services [10.718353079920007]
本論文では、無線アクセスネットワークスライスと無線リソース管理に対処するために、ネットワークの端でDeep Reinforcement Learningを利用する新しいアーキテクチャを提案する。
提案手法の有効性を,自律走行型ユースケースを考慮したコンピュータシミュレーションにより検討した。
論文 参考訳(メタデータ) (2021-03-18T14:18:34Z) - Artificial Intelligence at the Edge [25.451110446336276]
5Gモバイル通信ネットワークは通信容量を増やし、伝送遅延とエラーを低減し、省エネする。
将来の6Gテクノロジーは、可視光通信など、より多くの技術を統合します。
多くのアプリケーションは、アプリケーションのエンドポイントに近い計算と分析を必要とします。つまり、中央集権型クラウドではなく、ネットワークの端にあります。
論文 参考訳(メタデータ) (2020-12-10T02:08:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。