論文の概要: A Survey on Integrated Sensing, Communication, and Computation
- arxiv url: http://arxiv.org/abs/2408.08074v2
- Date: Tue, 12 Nov 2024 13:26:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-13 13:17:38.824165
- Title: A Survey on Integrated Sensing, Communication, and Computation
- Title(参考訳): 統合センシング・コミュニケーション・計算に関する調査研究
- Authors: Dingzhu Wen, Yong Zhou, Xiaoyang Li, Yuanming Shi, Kaibin Huang, Khaled B. Letaief,
- Abstract要約: 次世代のワイヤレス技術である6Gは、ユビキタスなインテリジェントサービスの時代を後押しすることを目指している。
これらのモジュールのパフォーマンスは相互依存しており、時間、エネルギー、帯域幅のリソース競争を生み出している。
統合通信と計算(ICC)、統合センシングと計算(ISC)、統合センシングと通信(ISAC)といった既存の技術は、この課題に対処するために部分的に進歩してきた。
- 参考スコア(独自算出の注目度): 57.6762830152638
- License:
- Abstract: The forthcoming generation of wireless technology, 6G, aims to usher in an era of ubiquitous intelligent services, where everything is interconnected and intelligent. This vision requires the seamless integration of three fundamental modules: Sensing for information acquisition, communication for information sharing, and computation for information processing and decision-making. These modules are intricately linked, especially in complex tasks such as edge learning and inference. However, the performance of these modules is interdependent, creating a resource competition for time, energy, and bandwidth. Existing techniques like integrated communication and computation (ICC), integrated sensing and computation (ISC), and integrated sensing and communication (ISAC) have made partial strides in addressing this challenge, but they fall short of meeting the extreme performance requirements. To overcome these limitations, it is essential to develop new techniques that comprehensively integrate sensing, communication, and computation. This integrated approach, known as Integrated Sensing, Communication, and Computation (ISCC), offers a systematic perspective for enhancing task performance. This paper begins with a comprehensive survey of historic and related techniques such as ICC, ISC, and ISAC, highlighting their strengths and limitations. It then discusses the benefits, functions, and challenges of ISCC. Subsequently, the state-of-the-art signal designs for ISCC, along with network resource management strategies specifically tailored for ISCC are explored. Furthermore, this paper discusses the exciting research opportunities that lie ahead for implementing ISCC in future advanced networks, and the unresolved issues requiring further investigation. ISCC is expected to unlock the full potential of intelligent connectivity, paving the way for groundbreaking applications and services.
- Abstract(参考訳): 次世代のワイヤレス技術である6Gは、あらゆるものが相互接続されインテリジェントな、ユビキタスなインテリジェントサービスの時代を後押しすることを目指している。
このビジョンには、情報取得のためのセンシング、情報共有のためのコミュニケーション、情報処理と意思決定のための計算という、3つの基本的なモジュールのシームレスな統合が必要である。
これらのモジュールは、特にエッジ学習や推論のような複雑なタスクにおいて、複雑にリンクされている。
しかし、これらのモジュールのパフォーマンスは相互依存しており、時間、エネルギー、帯域幅のリソース競争を生み出している。
統合通信と計算(ICC)、統合センシングと計算(ISC)、統合センシングと通信(ISAC)といった既存の技術は、この課題に対処するために部分的に進歩してきたが、極端な性能要件を満たすには至らなかった。
これらの制限を克服するためには、感覚、コミュニケーション、計算を包括的に統合する新しい技術を開発することが不可欠である。
この統合されたアプローチは、ISCC(Integrated Sensing, Communication, and Computation)と呼ばれ、タスクパフォーマンスを向上させるための体系的な視点を提供する。
本稿は、ICC、ICC、ISACなどの歴史的および関連する技術に関する総合的な調査から始まり、その強みと限界を強調した。
その後、ISCCの利点、機能、課題について論じる。
その後、ISCCに特化されたネットワーク資源管理戦略とともに、ISCCの最先端の信号設計について検討した。
さらに、今後の先進的ネットワークにおけるISCC導入に向けたエキサイティングな研究機会と、さらなる調査を必要とする未解決課題について論じる。
ISCCは、インテリジェントなコネクティビティの可能性を解き放ち、アプリケーションやサービスを画期的なものにする道を開くと期待されている。
関連論文リスト
- Semantic Revolution from Communications to Orchestration for 6G: Challenges, Enablers, and Research Directions [16.807697160355303]
本稿では,KB-MANO(Knowledge Base Management and Orchestration)フレームワークを紹介する。
KB-MANOは、知識の更新と再配布に特化したネットワークおよびコンピューティングリソースの割り当てを目的としている。
KB-MANOと無線アクセスネットワークのリソース割り当ての統合を実証するために概念実証法を提案する。
論文 参考訳(メタデータ) (2024-06-24T09:04:09Z) - Socialized Learning: A Survey of the Paradigm Shift for Edge Intelligence in Networked Systems [62.252355444948904]
本稿では,エッジインテリジェンス(EI)と社会学習(SL)の統合に関する文献レビューの結果について述べる。
SLは、エージェントの協調能力と集団知性を増幅することを目的とした、社会的原則と行動に基づく学習パラダイムである。
ソーシャル化アーキテクチャ、ソーシャル化トレーニング、ソーシャル化推論の3つの統合コンポーネントについて詳しく検討し、その強みと弱点を分析した。
論文 参考訳(メタデータ) (2024-04-20T11:07:29Z) - Emergency Computing: An Adaptive Collaborative Inference Method Based on
Hierarchical Reinforcement Learning [14.929735103723573]
センシング,通信,計算,キャッシュ,インテリジェンスを備えた緊急ネットワーク(E-SC3I)を提案する。
このフレームワークには、緊急コンピューティング、キャッシュ、統合通信とセンシング、インテリジェンス強化のためのメカニズムが含まれている。
本稿では,特に緊急コンピューティングに焦点をあて,階層的強化学習に基づく適応型協調推論手法(ACIM)を提案する。
論文 参考訳(メタデータ) (2024-02-03T13:28:35Z) - Learning-driven Zero Trust in Distributed Computing Continuum Systems [5.5676731834895765]
ZT(Zero Trust)を学習技術と組み合わせることで、分散コンピューティング連続システムにおけるさまざまな運用およびセキュリティ上の課題を解決することができる。
我々はDCCS用に設計された新しい学習駆動型ZT概念アーキテクチャを提案する。
学習プロセスが要求を検出してブロックし、リソースアクセス制御を強化し、ネットワークオーバーヘッドを低減する方法を示す。
論文 参考訳(メタデータ) (2023-11-29T08:41:06Z) - Semantic Communications for Artificial Intelligence Generated Content
(AIGC) Toward Effective Content Creation [75.73229320559996]
本稿では,AIGCとSemComの統合の概念モデルを開発する。
AIGC技術を利用した新しいフレームワークが,意味情報のためのエンコーダおよびデコーダとして提案されている。
このフレームワークは、生成されたさまざまなタイプのコンテンツ、要求される品質、活用される意味情報に適応することができる。
論文 参考訳(メタデータ) (2023-08-09T13:17:21Z) - Task-Oriented Integrated Sensing, Computation and Communication for
Wireless Edge AI [46.61358701676358]
エッジ人工知能(AI)は、従来のクラウドをネットワークエッジまで高速に計算するために提案されている。
近年,特定のエッジAIタスクに対する無線センシング,計算,通信(SC$2$)の収束が,パラダイムシフトを引き起こしている。
超信頼性で低レイテンシなエッジインテリジェンス獲得を実現するために、完全に統合されたセンシング、計算、通信(I SCC)を進めることが最重要である。
論文 参考訳(メタデータ) (2023-06-11T06:40:51Z) - Integrated Sensing-Communication-Computation for Edge Artificial Intelligence [41.611639821262415]
統合センシング通信計算(I SCC)は,資源利用の向上に最重要課題である。
本稿では、エッジ学習タスクとエッジAI推論タスクをアプリケーション層と物理層の両方で行うための各種のISCCスキームについて述べる。
論文 参考訳(メタデータ) (2023-06-01T21:35:20Z) - Beyond 5G Networks: Integration of Communication, Computing, Caching,
and Control [76.13180570097299]
まず、i4Cのさまざまな側面のスナップショットを示し、背景、モチベーション、主要な技術イネーブラー、潜在的なアプリケーション、ユースケースで構成されています。
我々は、i4Cに関連する最先端の研究成果を概観し、従来型と人工知能(AI)ベースの統合アプローチの最近の動向に注目した。
最後に,6Gなどの5Gネットワークを超えて,オープンな課題と今後の研究方向性を提案する。
論文 参考訳(メタデータ) (2022-12-26T12:58:56Z) - Machine Learning-Based User Scheduling in Integrated
Satellite-HAPS-Ground Networks [82.58968700765783]
第6世代通信ネットワーク(6G)の強化のための価値あるソリューション空間の提供を約束する。
本稿では,空対地統合通信におけるユーザスケジューリングにおける機械学習の可能性について述べる。
論文 参考訳(メタデータ) (2022-05-27T13:09:29Z) - Artificial Intelligence for Satellite Communication: A Review [91.3755431537592]
この研究は、AI、その多様なサブフィールド、そして最先端のアルゴリズムの概要を提供する。
さまざまな衛星通信分野へのAIの適用は、ビームホッピング、アンチジャミング、ネットワークトラフィック予測、チャネルモデリング、テレメトリマイニング、電離圏シンチレーション検出、干渉管理、リモートセンシング、行動モデリング、スペースエアグラウンド統合、エネルギー管理など、優れた可能性を実証しています。
論文 参考訳(メタデータ) (2021-01-25T13:01:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。