論文の概要: Intelligent Feature Extraction, Data Fusion and Detection of Concrete
Bridge Cracks: Current Development and Challenges
- arxiv url: http://arxiv.org/abs/2212.13258v1
- Date: Sat, 24 Dec 2022 17:40:05 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-29 14:52:49.326030
- Title: Intelligent Feature Extraction, Data Fusion and Detection of Concrete
Bridge Cracks: Current Development and Challenges
- Title(参考訳): コンクリート橋クラックの知的特徴抽出・データ融合・検出の現状と課題
- Authors: Di Wang, Simon X. Yang
- Abstract要約: 亀裂は橋梁構造物の健康評価にとって重要な指標である。
知的特徴抽出・データ融合・き裂検出のための知的理論・方法論に関する現状研究について概説する。
- 参考スコア(独自算出の注目度): 10.807954952981301
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: As a common appearance defect of concrete bridges, cracks are important
indices for bridge structure health assessment. Although there has been much
research on crack identification, research on the evolution mechanism of bridge
cracks is still far from practical applications. In this paper, the
state-of-the-art research on intelligent theories and methodologies for
intelligent feature extraction, data fusion and crack detection based on
data-driven approaches is comprehensively reviewed. The research is discussed
from three aspects: the feature extraction level of the multimodal parameters
of bridge cracks, the description level and the diagnosis level of the bridge
crack damage states. We focus on previous research concerning the quantitative
characterization problems of multimodal parameters of bridge cracks and their
implementation in crack identification, while highlighting some of their major
drawbacks. In addition, the current challenges and potential future research
directions are discussed.
- Abstract(参考訳): コンクリート橋の外観欠陥として, ひび割れは橋梁構造物の健全性評価にとって重要な指標である。
ひび割れの同定については多くの研究がなされているが、橋梁ひび割れの進化機構の研究はまだ実用的ではない。
本稿では,インテリジェントな特徴抽出,データ融合,ひび割れ検出のためのインテリジェントな理論と方法論に関する最新研究を総合的に検討する。
本研究は, 橋梁き裂のマルチモーダルパラメータの特徴抽出レベル, 記述レベル, 橋梁き裂損傷状態の診断レベルという3つの側面から考察した。
本稿では, 橋梁ひび割れのマルチモーダルパラメータの定量的評価問題とそのひび割れ識別における実装に関する過去の研究に焦点をあてるとともに, 主な欠点をいくつか強調する。
また,現在の課題と今後の研究の方向性についても論じる。
関連論文リスト
- Deep Learning-Based Fatigue Cracks Detection in Bridge Girders using Feature Pyramid Networks [8.59780173800845]
本研究では,橋梁の鋼箱桁のひび割れ情報を含む高分解能画像からの自動き裂分割手法を提案する。
亀裂のマルチスケールの特徴を考慮し, 亀裂検出のための特徴ピラミッドネットワーク(FPN)の畳み込みニューラルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-10-28T16:16:15Z) - A Survey on 3D Skeleton Based Person Re-Identification: Approaches,
Designs, Challenges, and Future Directions [71.99165135905827]
3Dスケルトンによる人物の再識別は、パターン認識コミュニティに大きな関心を惹きつける重要な研究分野である。
多くのアプリケーションシナリオにおいて顕著なアドバンテージを持つ3Dスケルトンに基づく人物再同定手法が近年提案されている。
本稿では,現在のSRIDアプローチ,モデル設計,課題,今後の方向性を体系的に調査する。
論文 参考訳(メタデータ) (2024-01-27T04:52:24Z) - Progressive Evidence Refinement for Open-domain Multimodal Retrieval
Question Answering [20.59485758381809]
現在のマルチモーダル検索質問答えモデルは2つの大きな課題に直面している。
モデルへの入力として圧縮されたエビデンスの特徴を利用すると、エビデンス内の詳細な情報が失われる。
本稿では,これらの問題を緩和するための証拠検索と質問応答のための2段階の枠組みを提案する。
論文 参考訳(メタデータ) (2023-10-15T01:18:39Z) - Enhancing Human-like Multi-Modal Reasoning: A New Challenging Dataset
and Comprehensive Framework [51.44863255495668]
マルチモーダル推論は、人間のような知性を示す人工知能システムの追求において重要な要素である。
提案するマルチモーダル推論(COCO-MMR)データセットは,オープンエンド質問の集合を包含する新しいデータセットである。
画像とテキストエンコーダを強化するために,マルチホップ・クロスモーダル・アテンションや文レベルのコントラスト学習などの革新的な手法を提案する。
論文 参考訳(メタデータ) (2023-07-24T08:58:25Z) - Infrastructure Crack Segmentation: Boundary Guidance Method and
Benchmark Dataset [11.282003429161163]
本稿では, き裂の固有特性について検討し, き裂の識別に境界特性を導入する。
境界誘導クラックセグメンテーションモデル(BGCrack)を、高頻度モジュールを含むターゲット構造とモジュールで構築する。
本稿では, 鋼ひび割れの同定のための統一的, 公正なベンチマークを確立するための鋼ひび割れデータセットを提供する。
論文 参考訳(メタデータ) (2023-06-15T15:25:53Z) - Application of Segment Anything Model for Civil Infrastructure Defect Assessment [0.15077212427453812]
本研究では,コンクリート構造物のひび割れ検出のための2つの深層学習モデルSAMとU-Netの性能評価を行う。
その結果, それぞれのモデルには, 異なる種類のひび割れを検知する独自の強度と限界があることが示唆された。
論文 参考訳(メタデータ) (2023-04-25T06:17:44Z) - What's Cracking? A Review and Analysis of Deep Learning Methods for
Structural Crack Segmentation, Detection and Quantification [0.9449650062296824]
本レビューは,ディープラーニングを利用したひび割れ解析アルゴリズムの分野における論文の概要を研究者に提供することを目的としている。
コンピュータビジョンアルゴリズムを適用して、構造的な健康モニタリング環境でひび割れを表面化することで解決される様々なタスクを概説する。
レビューではまた、クラックに使用される一般的なデータセットと、それらのアルゴリズムのパフォーマンスを評価するために使用されるメトリクスを強調している。
論文 参考訳(メタデータ) (2022-02-08T08:22:26Z) - Video-based Facial Micro-Expression Analysis: A Survey of Datasets,
Features and Algorithms [52.58031087639394]
マイクロ表現は不随意かつ過渡的な表情である。
嘘検出や犯罪検出など、幅広い応用において重要な情報を提供することができる。
マイクロ表現は過渡的で低強度であるため、検出と認識は困難であり、専門家の経験に大きく依存する。
論文 参考訳(メタデータ) (2022-01-30T05:14:13Z) - Deep Learning for Anomaly Detection: A Review [150.9270911031327]
本稿では,3つの高レベルカテゴリと11の細粒度カテゴリの進歩を網羅した包括的分類法による深部異常検出の研究について調査する。
我々は、それらの重要な直観、客観的機能、基礎となる仮定、利点とデメリットをレビューし、上記の課題にどのように対処するかについて議論する。
論文 参考訳(メタデータ) (2020-07-06T02:21:16Z) - Anomalous Example Detection in Deep Learning: A Survey [98.2295889723002]
本調査は,ディープラーニングアプリケーションにおける異常検出の研究について,構造化された包括的概要を提供する。
既存の技術に対する分類法を,その基礎となる前提と採用アプローチに基づいて提案する。
本稿では,DLシステムに異常検出技術を適用しながら未解決の研究課題を取り上げ,今後の課題について述べる。
論文 参考訳(メタデータ) (2020-03-16T02:47:23Z) - Survey of Network Intrusion Detection Methods from the Perspective of
the Knowledge Discovery in Databases Process [63.75363908696257]
本稿では,侵入検知器の開発を目的として,ネットワークデータに適用された手法について概説する。
本稿では,データのキャプチャ,準備,変換,データマイニング,評価などの手法について論じる。
この文献レビューの結果、ネットワークセキュリティ分野のさらなる研究のために考慮すべきいくつかのオープンな問題について検討する。
論文 参考訳(メタデータ) (2020-01-27T11:21:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。